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Isometric affine actions on Banach spaces and spaces with

labelled partitions

S. Arnt

Abstract

We define the structure of spaces with labelled partitions which generalizes the structure
of spaces with measured walls and study the link between actions by automorphisms on
spaces with labelled partitions and isometric affine actions on Banach spaces, and more
particularly, on Lp spaces. We build natural spaces with labelled partitions for the action of
various contructions of groups, namely : direct sum ; semi-direct product ; wreath product and
amalgamated free product. We apply this to prove that the wreath product of a group with
property PLp by a group with Haagerup property has property PLp and the amalgamated
free product of groups with property PLp has property PLp.

1 Introduction

A locally compact second countable group G has Haagerup property (or is a-(T)-menable) if
there exists a proper continuous isometric affine action of G on a Hilbert space ; this property can
be seen as a strong negation of Kazhdan’s property (T) (an overview of the Haagerup property
can be found in [CCJ+01]). Groups having Haagerup property are known to satisfy the Baum-
Connes conjecture by a result of Higson and Kasparov in [HK01] (see [Jul98] for further details).
Haagerup property is closed by taking subgroups, direct products, amalgamated products over
finite subsets but it is not stable by group extensions in general, even in the case of semi-direct
products. However, Cornulier, Stalder and Valette recently proved in [CSV12] that it is stable by
a particular kind of extension, namely the wreath product. They use for their proof the connexion
between Haagerup property and spaces with measured walls, that we will now explain.

A space with walls is a pair (X,W ) where X is a set and W is a family of partitions of X
in two pieces called walls such that any pair of points of X is separated by finitely many walls.
This notion was introduced by Haglund and Paulin in [HP98] and generalized in a topological
setting by Cherix, Martin and Valette in [CMV04] to space with measured walls (see Definition
3.16). It was gradually realised that the Haagerup property is equivalent to the existence of a
proper action on a space with measured walls ; more precisely, we have the following theorem : a
locally compact second countable group has the Haagerup property if, and only if, it acts properly
by automorphisms on a space with measured walls. Using results of Robertson and Steger (see
[RS98]), Cherix, Martin and Valette in [CMV04], proved this theorem for discrete groups and
Chatterji, Drutu and Haglund extended the equivalence to locally compact second countable
groups using the notion of median metric spaces in [CDH10]. The stability of the Haagerup
property by wreath product was established in [CSV12] by constructing a space with measured
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walls from the structures of measured walls on each factor, and moreover, in the same article,
Cornulier, Stalder and Valette generalized this result to the permutational wreath product (see
Definition 5.1) when the index set I is a quotient by a co-Haagerup subgroup of the shifting
group G (see [CI11] for a counter example when the pair (G, I) has relative property (T)). This
result led to the first example of Haagerup groups which are not weakly amenable in the sense
of [CH89].
The notion of Haagerup property naturally extends to proper isometric affine action on Banach
spaces. Recent works have been made about isometric actions on Banach spaces : in [HP06],
Haagerup and Przybyszewska showed that every locally compact second countable group G acts
properly by affine isometries on the reflexive Banach space

⊕2
n∈N L2n(G,µ) where µ is the Haar

measure ; Cornulier, Tessera, Valette introduced in [CTV08] property (BP V
0 ) for V a Banach

space as a tool to show that the simple Lie group G = Sp(n, 1) acts properly by isometries on
Lp(G) for p > 4n + 2 ; in [BFGM07], Bader, Furman Gelander and Monod, studied an analog
of property (T) in terms of Lp spaces and more generally, of superreflexive Banach spaces. One
of the motivation of this topic is given by a recent result of Kasparov and Yu in [KY12] which
asserts that the existence of coarse embeddings of a finitely generated group in a uniformly convex
Banach space implies the coarse geometric Novikov conjecture for this group. See [Now13] for
an overview of results and questions about isometric affine actions on Banach spaces.
We will focus on specific Banach spaces, namely, Lp spaces. For p ≥ 1, we say that a locally
compact second countable group G has property PLp (or is a-FLp-menable) if there exists
a proper continuous isometric affine action on a Lp space. See for instance [CDH10], for a
characterisation of property PLp for p ∈ [1, 2] in terms of Haagerup property. An important
example is the following theorem due to Yu (see [Yu05]) : let Γ be a discrete Gromov hyperbolic
group. Then there exists p ≥ 2 such that Γ has property PLp. Yu proved this result by giving
an explicit proper isometric affine action of Γ on ℓp(Γ× Γ | d(x, y) ≤ R) using a construction of
Mineyev in [Min01] ; see [Bou11] or [Nic12] for other proofs of this result in terms of boundaries
of G. A remarkable consequence is that there exists infinite groups with property (T) (and hence,
without Haagerup property) which have property PLp for some p > 2.

In this paper, we define a generalization of the structure of spaces with measured walls,
namely, the structure of spaces with labelled partitions which provides a flexible framework, in
terms of geometry and stability by various type of group constructions, for isometric affine actions
on Banach spaces. In Paragraph 3.3, we establish the following result which links isometric affine
actions on Banach spaces and actions by automorphisms on spaces with labelled partitions :

Theorem 1. Let G be topological group.

1. If G acts (resp. acts properly) continuously by affine isometries on a Banach space B then
there exists a structure (G,P, F (P)) of space with labelled partitions on G such that G acts
(resp. acts properly) continuously by automorphisms on (G,P, F (P)) via its left-action on
itself. Moreover, there exists a linear isometric embedding F (P) →֒ B.

2. If G acts (resp. acts properly) continuously by automorphisms on a space with labelled
partitions (X,P, F (P)) then there exists a (resp. proper) continuous isometric affine action
of G on a Banach space B. Moreover, B is a closed subspace of F (P).

This theorem can be rephrased in the particular case of Lp spaces as follows :

Corollary 2. Let p ≥ 1 with p /∈ 2Zr {2} and G be a topological group. G has property PLp if,
and only if, G acts properly continuously by automorphisms on a space with labelled partitions
(X,P, F (P)) where F (P) is isometrically isomorphic to a closed subspace of an Lp space.
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A crucial factor in the definition of space with labelled partitions is the “geometric” unders-
tanding of the construction of Mineyev in [Min01] used by Yu in [Yu05] to exhibit a proper
action of discrete hyperbolic groups on some ℓp space. Moreover, another inspiration for this
definition comes from [CCJ+01] Proposition 7.4.1 where Valette states the following geometric
characterisation of the Haagerup property for locally compact groups : G has the Haagerup
property if, and only if, there exists a metric space (X, d) on which G acts isometrically and
metrically properly, a unitary representation π of G on a Hilbert space Hπ, and a continuous
map c : X ×X → Hπ such that :

1. Chasles’ relation :
for all x, y, z ∈ X, c(x, z) = c(x, y) + c(y, z) ;

2. G-equivariance condition :
for all x, y ∈ X, g ∈ G, c(gx, gy) = π(g)c(x, y) ;

3. Properness condition :
if d(x, y) → +∞, then ‖c(x, y)‖Hπ → +∞.

To emphasize the connection with this result, we use the same notation c (for cocycle) for the
separation map c : X ×X → F (P) associated with a set of labelling functions P (see Definition
3.3). In fact, an immediate consequence of Theorem 1 Statement 1. is that the separation map
cα of the set of labelled partitions associated with a proper isometric affine action α on a Banach
space (see Definition 3.32), satisfies the conditions 1., 2., and 3. mentionned above.

We describe, in Part 2., the maps that preserve the structure of spaces with labelled partitions
in order to define actions by automorphisms on a space with labelled partitions. This notion of
homomorphisms of spaces with labelled partitions generalizes the notion of homomorphisms of
spaces with measured walls (see [CDH10] Definition 3.5).
We discuss some constructions of spaces with labelled partitions for the direct sum, semi-direct
product, wreath product and amalgamated free product in Sections 4, 5 and 6. We apply these
constructions in the case of groups with property PLp and we obtain the following stability
properties :

Theorem 3. Let H,G be countable discrete groups, L be a subgroup of G and p > 1, with
p /∈ 2Z r {2}. We denote by I the quotient G/L and W =

⊕
I H. Assume that G is Haagerup,

L is co-Haagerup in G and H has property PLp.
Then the permutational wreath product H ≀I G = W ⋊G has property PLp.

Theorem 4. Let G,H be countable discrete groups, F be a finite group such that F →֒ G and
F →֒ H and p > 1 with p /∈ 2Zr {2}. Then G,H have property PLp if, and only if, G ∗F H has
property PLp.

We mention that, in his thesis, Pillon obtains by other methods the stability of property PLp

by amalgamated free product over finite subgroups and he also computes a lower bound for the
equivariant Lp-compression of such a product in terms of the equivariant Lp-compression of the
factors. More precisely, he exhibits an explicit proper cocycle for a representation of the product
built from the induced representations of the factors.
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Subsequently, all topological groups we consider are assumed to be Hausdorff.

2 Preliminaries

2.1 Metrically proper actions

A pseudo-metric d on a set X is a symmetric map d : X×X → R+ which satisfies the triangle
inequality and d(x, x) = 0. But unlike a metric, a pseudo-metric need not separate points.

Definition 2.1. Let G be a topological group acting continuously isometrically on a pseudo-
metric space (X, dX ). The G-action on X is said metrically proper if, for all (or equivalently,
for some) x0 ∈ X :

lim
g→∞

dX(g.x0, x0) = +∞,

i.e., in other words, for all R ≥ 0, the set {g ∈ G | dX(g.x0, x0) ≤ R} is relatively compact in G.

Let X be a set endowed with a pseudo-metric d. We put on X the following equivalence
relation : for x, x′ ∈ X, x ∼ x′ if, and only if, d(x, x′) = 0, and we denote by Y the quotient
set X/ ∼. Then we can define a metric d̃ on Y by setting, for x, x′ ∈ X, d̃([x], [x′]) = d(x, x′).
Moreover, an isometric group action (X, d) preserves the classes of ∼ and then induces an
isometric action on (Y, d̃).

Lemma 2.2. Let G be a topological group acting continuously isometrically on a pseudo-metric
space (X, d). The G-action on X is metrically proper if, and only if, the induced G-action on
the quotient metric space (Y, d̃) is metrically proper.

2.2 Isometric affine actions

Definition 2.3. We say that the action of a topological group G on a topological space X is
strongly continuous if, for all x ∈ X, the orbit map from G to X, g 7→ gx is continuous.

Let G be a topological group and let (B, ‖.‖) be a Banach space on K = R or C.

Definition 2.4. A continuous isometric affine action α of G on B is a strongly continuous
morphism

α : G −→ Isom(B) ∩ Aff(B).

Notice that if B is a real Banach space, then, by Mazur-Ulam Theorem,

Isom(B) ∩Aff(B) = Isom(B).

Proposition 2.5. A continuous isometric affine action α of G on B is characterised by a pair
(π, b) where :

– π is a strongly continuous isometric representation of G on B,
– b : G → B is a continuous map satisfying the 1-cocycle relation : for g, h ∈ G,

b(gh) = π(g)b(h) + b(g).

And we have, for g ∈ G, x ∈ B :

α(g)x = π(g)x + b(g).
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Definition 2.6. Let α be a continuous isometric affine action of G on B. We say that α is
proper if the action of G on the metric space (B, d‖.‖) is metrically proper where d‖.‖ is the
canonical metric on B induced by the norm ‖.‖.

Proposition 2.7. A continuous isometric affine action α of G on B is proper if, and only if

‖b(g)‖ −→
g→∞

+∞.

Definition 2.8. Let p ≥ 1. We say that G has property PLp (or is a-FLp-menable) if there
exists a proper continuous isometric affine action of G on a Lp space.

2.3 On isometries of Lp-spaces

In general, for p ≥ 1, a closed subspace of a Lp-space is not a Lp-space (exempt the special case
p = 2) ; but, in [HJ81], Hardin showed the following result about extension of linear isometries
on closed subspace of a Lp (here, we give a reformulation of this result coming from [BFGM07],
Corollary 2.20) :

Theorem 2.9. Let p > 1 with p /∈ 2Z r {2} and F be a closed subspace of Lp(X,µ). Let
π be a linear isometric representation of a group G on F . Then there is a linear isometric
representation α′ of G on some other space Lp(X ′, µ′) and a linear G-equivariant isometric
embedding F →֒ Lp(X ′, µ′).

An immediate consequence is the following :

Corollary 2.10. Let p > 1 with p /∈ 2Zr {2}, F be a closed subspace of a Lp-space and G be a
topological group. If G acts properly by affine isometries on F , then G has property PLp.

In Section 4, we embed linearly isometrically into Lp spaces some normed vector spaces
isometrically isomorphic to a direct sums of Lp spaces thanks to the following basic result :

Definition 2.11. Let I be a countable index set, (Bi, ‖.‖Bi
)i∈I be a family of Banach spaces and

p ≥ 1. We call ℓp-direct sum of the family (Bi) the space :

B =
⊕

i∈I

pBi :=

{
(xi)i∈I ∈

∏

i∈I

Bi |
∑

i∈I

‖xi‖
p
Bi

< +∞

}
,

and we denote, for x = (xi) ∈ B,

‖x‖p :=

(
∑

i∈I

‖xi‖
p
Bi

) 1
p

.

The space B =
⊕

i∈I
pBi endowed with the norm ‖.‖p is a Banach space, and moreover, we

have :

Proposition 2.12. Let I be a countable index set, p ≥ 1 and (Lp(Xi, µi))i∈I be a family of

Lp-spaces. Then

(
⊕

i∈I

pLp(Xi, µi), ‖.‖p

)
is isometrically isomorphic to a Lp-space.
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3 Spaces with labelled partitions and actions on Banach Spaces

In this section we will introduce the structure of space with labelled partitions and record for
further use a few basic properties.

3.1 Spaces with labelled partitions

1. Definitions

Let K = R or C.

Consider a set X and a function p : X → K. There is a natural partition P = P (p) of X
associated with p :
We have the following equivalence relation ∼p on X : for x, y ∈ X,

x ∼p y if, and only if, p(x) = p(y).

We define the partition associated with p by P (p) = {π−1
p (h) | h ∈ X/ ∼p} where πp is the

canonical projection from X to X/ ∼p.

Definition 3.1. Let X be a set, and P = {p : X → K} be a family of functions.
– We say that p is a labelling function on X and the pair (P, p) is called a labelled partition

of X.

– We say that x, y ∈ X are separated by p ∈ P if p(x) 6= p(y) and we denote by P(x|y) the
set of all labelling functions separating x and y.

Remark 3.2. The terminology “x and y are separated by p” comes from the fact that, if we
denote by P the partition of X associated with p, x and y are separated by p if, and only if, x
and y belongs to two different sets of the partition P i.e. P separates x and y.

Consider a set P of labelling functions on X, and the K-vector space F(P,K) of all functions
from P to K. Then we have a natural map c : X ×X → F(P,K) given by : for x, y ∈ X and
p ∈ P,

c(x, y)(p) = p(x)− p(y).

Notice that p belongs to P(x|y) if, and only if, c(x, y)(p) 6= 0.

Definition 3.3. Let X be a set and P be a family of labelling functions. The map c : X ×X →
F(P,K) such that, for x, y ∈ X and for p ∈ P, c(x, y)(p) = p(x)− p(y) is called the separation
map of X relative to P .

We now define the notion of space with labelled partitions :

Definition 3.4 (Space with labelled partitions).
Let X be a set, P be a family of labelling functions from X to K and (F(P), ‖.‖) be a semi-
normed space of K-valued functions on P such that the quotient vector space F (P) of F(P) by
its subspace F(P)0 = {ξ ∈ F(P) | ‖ξ‖ = 0} is a Banach space.

We say that (X,P, F (P)) is a space with labelled partitions if, for all x, y ∈ X :

c(x, y) : P → K belongs to F(P).

7



Definition 3.5. If (X,P, F (P)) is a space with labelled partitions, we can endow X with the
following pseudo-metric : d(x, y) = ‖c(x, y)‖ for x, y ∈ X.
We call d the labelled partitions pseudo-metric on X.

Remark 3.6. If (X,P, F (P)) is a space with labelled partitions, then the separation map c :
X ×X → F (P) is continuous where X ×X is endowed with the product topology induced by the
topology of (X, d).

2. Actions on spaces with labelled partitions

Here, we describe the maps that preserve the structure of space with labelled partitions.

Definition 3.7 (homomorphism of spaces with labelled partitions). Let (X,P, F (P)), (X ′,P ′, F ′(P ′))
be spaces with labelled partitions and let f : X → X ′ be a map from X to X ′.

We say that f is a homomorphism of spaces with labelled partitions if :

1. for any p′ ∈ P ′, Φf (p
′) := p′ ◦ f belongs to P,

2. for all ξ ∈ F (P), ξ ◦ Φf belongs to F ′(P ′) and,

‖ξ ◦ Φf‖F ′(P′)
= ‖ξ‖

F (P)
.

An automorphism of the space with labelled partitions (X,P, F (P)) is a bijective map f : X → X
such that f and f−1 are homomorphisms of spaces with labelled partitions from (X,P, F (P)) to
(X,P, F (P)).

Remark 3.8.

- If f is a homomorphism of spaces with labelled partitions, then f is an isometry from X to X ′

endowed with their respective labelled partitions pseudo-metrics ; indeed, for x, y ∈ X,

dX(x, y) = ‖c(x, y)‖
F (P)

= ‖c(x, y) ◦Φf‖F ′(P′)
= ‖c′(f(x), f(y))‖

F ′(P′)
= dX′(f(x), f(y)),

since we have c(x, y) ◦Φf = c′(f(x), f(y)).

- If f is an automorphism of space with labelled partitions, the map Φf is a bijection : (Φf )
−1 =

Φf−1.

Proposition 3.9. Let (X,P, F (P)), (X ′,P ′, F ′(P ′)),(X ′′,P ′′, F ′′(P ′′)) be spaces with labelled
partitions and f : X → X ′, f ′ : X ′ → X ′′ be homomorphisms of spaces with labelled partitions.
We denote Φf the map such that Φf (p

′) := p′ ◦ f , for p′ ∈ P ′, and Φf ′ the map such that
Φf ′(p′′) := p′′ ◦ f ′, for p′′ ∈ P ′′.

Then f ′◦f is a homomorphism of spaces with labelled partitions from (X,P, F (P)) to (X ′′,P ′′, F ′′(P ′′))
and we have, by denoting Φf ′◦f (p

′′) := p′′ ◦ (f ′ ◦ f) :

Φf ◦ Φf ′ = Φf ′◦f .

Proof. For all p′′ ∈ P ′′, we have :

8



Φf ′◦f (p
′′) = p′′ ◦ (f ′ ◦ f)

= (p′′ ◦ f ′) ◦ f

= Φf ′(p′′) ◦ f with Φf ′(p′′) ∈ P ′ by Definition 3.7

= Φf (Φf ′(p′′)) and hence,

Φf ′◦f (p
′′) = Φf ◦ Φf ′(p′′) ∈ P by Definition 3.7.

It follows that Φf ◦ Φf ′ = Φf ′◦f .

Now, let ξ ∈ F (P). Since ξ ◦Φf belongs to F ′(P ′),

ξ ◦ Φf ′◦f = (ξ ◦ Φf ) ◦ Φf ′ ∈ F ′′(P ′′),

and we clearly have, using the previous equality,

‖ξ ◦ Φf ′◦f‖F ′′(P′′)
= ‖ξ ◦ Φf‖F ′(P′)

= ‖ξ‖
F (P)

.

Remark 3.10. Assume a group G acts by automorphisms on (X,P, F (P)). For g ∈ G, we
denote by τ(g) : X → X, the map x 7→ τ(g)x = gx. Then, by Proposition 3.9, we have :

Φτ(g2) ◦Φτ(g1) = Φτ(g1g2).

Definition 3.11. Let (X,P, F (P)) be a space with labelled partitions and G be a topological
group acting by automorphisms on (X,P, F (P)).

– We say that G acts continuously on (X,P, F (P)), if the G-action on (X, d) is strongly
continuous.

– We say that G acts properly on (X,P, F (P)), if the G-action on (X, d) is metrically
proper where d is the labelled partitions pseudo-metric on X.

Remark 3.12. Notice that if a topological Hausdorff group G acts properly continuously by
automorphisms on a space (X,P, F (P)) with labelled partitions, then it is locally compact and
σ-compact : in fact, let x0 ∈ X ; for r > 0, Vr = {g ∈ G | d(gx0, x0) ≤ r} is a compact neigh-
bourhood of the identity element e in G since the action on (X, d) is strongly continuous and
proper, and we have G = ∪n∈N∗Vn.

Proposition 3.13. Let G be a topological group. Assume G acts continuously by automorphisms
on (X,P, F (P)).

The G-action on (X,P, F (P)) is proper if, and only if, for every (resp. for some) x0 ∈ X,
‖c(gx0, x0)‖ → ∞ when g → ∞.

Proof. It follows immediatly from the definition of a metrically proper action.

Lemma 3.14 (pull back of space with labelled partitions). Let (X,PX , FX (PX)) be a space with
labelled partitions, Y be a set and f : Y → X be a map. Then there exists a pull back structure
of space with labelled partitions (Y,PY , FY (PY )) turning f into a homomorphism.

Moreover, if G acts on Y and G acts continuously by automorphisms on (X,PX , FX(PX)) such
that f is G-equivariant, then G acts continuously by automorphisms on (Y,PY , FY (PY )).

9



Proof. We consider the family of labelling functions on Y :

PY = {p ◦ f | p ∈ PX},

and let cY be the separation map on Y associated with PY .
Let T : Vect

(
cY (y, y

′) | y, y′ ∈ Y
)
→ FX(PX) be the linear map such that T (cY (y, y

′)) =
cX(f(y), f(y′)). The map T is well defined and is injective since, for every p ∈ PX ,

cX(f(y), f(y′))(p) = p ◦ f(y)− p ◦ f(y′) = cY (y, y
′)(p ◦ f).

On Vect
(
cY (y, y

′) | y, y′ ∈ Y
)
, we consider the following norm :

for ξ ∈ Vect
(
cY (y, y

′) | y, y′ ∈ Y
)
, we set,

‖ξ‖
PY

= ‖T (ξ)‖
FX (PX)

.

And we set FY (PY ) = Vect
(
cY (y, y′) | y, y′ ∈ Y

)‖·‖
PY . Hence, by construction, (Y,PY , FY (PY ))

is a space with labelled partitions and f is clearly an homorphism from (Y,PY , FY (PY )) to
(X,PX , F (PX)) since, for all y, y′ ∈ Y ,

cY (y, y
′) ◦Φf = cX(f(y), f(y′)),

where Φf (p) = p ◦ f for p ∈ PX .

Assume that G acts on Y via τY and G acts continuously by automorphisms on (X,P, F (P))
via τX , and f is G-equivariant. We denote, for p ∈ PX and g ∈ G :
- ΦτX(g)(p) := p ◦ τX(g) and,
- ΦτY (g)(p ◦ f) := (p ◦ f) ◦ τY (g).

Since f is G-equivariant and PX is stable by τX , we have, for all p ∈ PX and all g ∈ G :

(p ◦ f) ◦ τY (g) = (p ◦ τX(g)) ◦ f ∈ PY .

Now, for every ξ ∈ FY (PY ) and every g ∈ G, we have :

‖ξ ◦ ΦτY (g)‖PY
= ‖T (ξ) ◦ ΦτX(g)‖FX (PX)

= ‖T (ξ)‖
FX (PX)

= ‖ξ‖
PY

.

It follows that G acts by automorphisms on (Y,PY , FY (PY )).
Moreover, we have, for every y ∈ Y and every g ∈ G, dY (τY (g)y, y) = dX(τX(g)f(y), f(y)),
where dX and dY are the labelled partitions pseudo-metric on respectively X and Y . Hence, for
y ∈ Y , y → τY (g)y is continuous from G to (Y, dY ).

Definition 3.15. Let (X,PX , FX(PX)) be a space with labelled partitions, Y be a set and f :
Y → X be a map. The structure of space with labelled partitions (Y,PY , FY (PY )) given by
Lemma 3.14 is called the pull back by f of the space with labelled partitions (X,PX , FX(PX)).

10



3.2 Examples

1. Spaces with measured walls

Our first example of spaces with labelled partitions is given by spaces with measured walls.
Here we cite the definition of the structure of space with measured walls from [CSV12].

Let X be a set. We endow 2X with the product topology and we consider, for x ∈ X, the clopen
subset of 2X , Ax := {A ⊂ X | x ∈ A}.

Definition 3.16. A measured walls structure is a pair (X,µ) where X is a set and µ is a Borel
measure on 2X such that for all x, y ∈ X :

dµ(x, y) := µ(Ax △Ay) < +∞

Proposition 3.17. Let (X,µ) be a measured space with walls. Then, for every real number
q ≥ 1, (X,P, Lq(P, µ)) is a space with labelled partitions where P = {1h | h ∈ 2X}.
Morever, we have, for x, y ∈ X,

‖c(x, y)‖qq = dµ(x, y).

Proof. We denote P = {1h | h ∈ 2X}. Then P is a family of labelling functions on X and we
denote by c the separation map of X associated with P.
Let x, y ∈ X. For h ∈ 2X , we have :

c(x, y)(1h) = 1h(x)− 1h(y) = 1Ax(h) − 1Ay(h).

The function f : 2X → P such that, for h ∈ 2X , f(h) = 1h is a bijection, and we endow P with
the direct image topology induced by f . Then, µ∗ : P → R such that, for any Borel subset A of
P, µ∗(A) = µ(f−1(A)) is a Borel measure on P.

We have ‖c(x, y)‖qq =
∫
P |c(x, y)(p)|qdµ∗(p) =

∫
2X |1Ax(h) − 1Ay(h)|

qdµ(h) = µ(Ax △Ay), and
then :

‖c(x, y)‖qq = dµ(x, y) < +∞.

It follows that, for all x, y ∈ X, c(x, y) belongs to Lq(P, µ) and hence, (X,P, Lq(P, µ)) is a space
with labelled partitions.

11
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Examples of walls in Z2.

2. Gromov hyperbolic groups

The following Lemma is a reformulation of a result of Yu (see [Yu05], Corollary 3.2) based
on a construction of Mineyev in [Min01].
For a triple x, y, z in a metric space (X, d), we denote by (x|y)z =

1
2 (d(x, z) + d(y, z)− d(x, y)).

Lemma 3.18 (Mineyev, Yu). Let Γ be a finitely generated δ-hyperbolic group. Then there exists a
Γ-equivariant function h : Γ×Γ → Fc(Γ) where Fc(Γ) = {f : Γ → R with finite support | ‖f‖1 =
1} such that :

1. for all a, x ∈ Γ, supp h(x, a) ⊂ B(a, 10δ),

2. there exists constants C ≥ 0 and ε > 0 such that, for all x, x′, a ∈ Γ,

‖h(x, a) − h(x′, a)‖1 ≤ Ce−ε(x|x′)a ,

3. there exists a constant K ≥ 0 such that, for all x, x′ ∈ Γ with d(x, x′) large enough,

#{a ∈ Γ | supp h(x, a) ∩ supp h(x′, a) = ∅} ≥ d(x, x′)−K.

12



Support of the labelling function associated with (a, b) with d(a, b) = 10δ.

This Lemma gives us a way to build a structure of labelled partitions on Gromov hyperbolic
groups :

Proposition 3.19 (Labelled partitions on a δ-hyperbolic group). Let Γ be a finitely generated
δ-hyperbolic group and we denote P = {(a, b) ∈ Γ× Γ | d(a, b) ≤ 10δ}. There exists q0 ≥ 1 such
that, for all q > q0, (Γ,P, ℓq(P)) is a space with labelled partitions.

Remark 3.20. Notice that, stated this way, P is not a set of labelling functions on Γ. Implicitely,
we do the following identification :

{(a, b) ∈ Γ× Γ | d(a, b) ≤ 10δ} ∼ {x 7→ h(a, x)(b) | (a, b) ∈ Γ2 with d(a, b) ≤ 10δ}.

In fact, x 7→ h(a, x)(b) is uniquely determined by the pair (a, b).

Proof of Proposition 3.19. We fix a finite generating set of Γ and we denote d the word metric
associated with it (and such that Γ is Gromov hyperbolic of constant δ with respect to d). As
Γ is uniformly locally finite, there exists a constant k > 0 such that, for all r > 0 and x ∈ Γ,
#B(x, r) ≤ kr.

Let ε be as in 2. Lemma 3.18 and set q0 =
ln(k)
ε . Let q > q0. Then for all q > q0,

∑

n∈N

kne−nqε < +∞.

13



Let h be the function given by Lemma 3.18 and notice that, for x, x′, a ∈ Γ, since #supp(h(x, a)) ≤
k,

‖h(x, a) − h(x′, a)‖q ≤ 2k
1
q ‖h(x, a) − h(x′, a)‖1. (∗)

As said in the previous remark, we can see P as a set of labelling functions on Γ using the
function h : we set, for (a, b) ∈ P and x ∈ Γ,

(a, b)(x) := h(x, a)(b).

We denote by c the separation map associated with P. We have, for x, x′ ∈ Γ,

‖c(x, x′)‖qℓq(P) =
∑

(a,b)∈P

|h(x, a)(b) − h(x, a)(b)|q ,

=
∑

a∈Γ

‖h(x, a) − h(x, a)‖qq by 1. Lemma 3.18,

≤
∑

a∈Γ

2qk‖h(x, a) − h(x, a)‖q1 by (∗),

≤ (2C)qk
∑

a∈Γ

e−qε(x|x′)a by 2. Lemma 3.18,

≤ (2C)qk
∑

a∈Γ

e−qε(d(x,a)−d(x,x′)),

≤ (2C)qk
∑

n∈N

kne−qε(n−d(x,x′)), and hence, since q > q0 :

‖c(x, x′)‖pℓp(P) ≤ (2C)qeqεd(x,x
′) < +∞

Thus c(x, x′) belongs to ℓp(P) for all x, x′ ∈ Γ. It follows that (Γ,P, ℓp(P)) is a space with
labelled partitions.

Proposition 3.21. Let Γ be a finitely generated δ-hyperbolic group. Let q0 ≥ 1 as in Proposition
3.19 and for q > q0, let (Γ,P, ℓq(P)) be the space with labelled partitions given by Proposition
3.19. Then the action of Γ by left-translation on itself induces a proper action of Γ by automor-
phisms on (Γ,P, ℓq(P)).

Proof. We keep the notations used in the proof of Proposition 3.19. We first show that Γ acts by
automorphisms on (Γ,P, ℓq(P)). Let γ, x ∈ Γ and (a, b) ∈ P. Since h is Γ-equivariant, we have :

Φγ((a, b))(x) = (a, b)(γx) = h(γx, a)(b) = h(x, γ−1a)(γ−1b) = (γ−1a, γ−1b)(x),

And hence,
Φγ((a, b)) = (γ−1a, γ−1b) ∈ P.

Moreover, for ξ ∈ ℓq(P), we have :

‖ξ ◦Φγ‖
q
ℓq(P)

=
∑

(a,b)∈P

|ξ(γ−1a, γ−1b)|q,

=
∑

(γa,γb)∈P

|ξ(a, b)|q,

=
∑

(a,b)∈P

|ξ(a, b)|q ,

‖ξ ◦Φγ‖
q
ℓq(P)

= ‖ξ‖q
ℓq(P)

.
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It follows that Γ acts by automorphisms on (Γ,P, ℓq(P)).

Now, consider the identity element e of Γ and let γ ∈ Γ.
We denote A = {a ∈ Γ | supp h(γ, a) ∩ supp h(e, a) = ∅}. Notice that for every x, a ∈ Γ,
‖h(x, a)‖q ≥

1
k . We have, by 3. Lemma 3.18, when d(γ, e) is large enough :

‖c(γ, e)‖q
ℓq (P)

=
∑

a∈Γ

‖h(γ, a) − h(e, a)‖qq ,

≥
∑

a∈A

‖h(γ, a) − h(e, a)‖qq ≥
∑

a∈A

(
2

k
)q, since ‖h(x, a)‖q ≥ 1

k

‖c(γ, e)‖q
ℓq (P)

≥ (
2

k
)q(d(γ, e) −K).

And hence, when γ → ∞ in Γ, we have : ‖c(γ, e)‖q
ℓq (P)

≥ ( 2k )
q(d(γ, e) −K) → +∞.

3. Labelled partitions on metric spaces

It turns out that any pseudo-metric spaces (X, d) can be realized as a space with labelled par-
titions (X,P, F (P)) with F (P) ≃ ℓ∞(X) and such that the pseudo-metric of labelled partitions
is exactly d :

Proposition 3.22. Let (X, d) be a pseudo-metric space and consider the family of labelling
functions on X :

P = {pz : x 7→ d(x, z) | z ∈ X}.

Then (X,P, ℓ∞(P)) is a space with labelled partitions.

Moreover, for all x, y ∈ X,
dP(x, y) = d(x, y),

where dP is the pseudo-metric of labelled partitions on X.

Proof. Let c be the separation map associated with P = {pz : x 7→ d(x, z) | z ∈ X}. For x, y ∈ X
and pz ∈ P, we have :

c(x, y)(pz) = pz(x)− pz(y) = d(x, z) − d(y, z) ≤ d(x, y),

and, in particular, c(x, y)(py) = d(x, y), then,

‖c(x, y)‖∞ = sup
pz∈P

|c(x, y)(pz)| = d(x, y).

Hence, (X,P, ℓ∞(P)) is a space with labelled partitions and dP(x, y) = ‖c(x, y)‖∞ = d(x, y).

This result motivates the study of structures of spaces labelled partitions on a pseudo-metric
space X : can we find other Banach spaces than ℓ∞(X) which gives a realization of the pseudo-
metric on X as a pseudo-metric of labelled partitions ?

A first element of answer is given by the case of the discrete metric on a set. On every set,
we can define a structure of labelled partitions which gives the discrete metric on this set :
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Proposition 3.23. Let X be a set and P = {∆x | x ∈ X} be the family of labelling functions

where, for x ∈ X, ∆x = 2
− 1

q δx.
Then, for every q ≥ 1, (X,P, ℓq(P)) is a space with labelled partitions.

Proof. We have, for x, y, z ∈ X with x 6= y :

c(x, y)(∆z) = ∆z(x)−∆z(y) =

{
0 if z /∈ {x, y}

±2
− 1

q otherwise.

and then,

‖c(x, y)‖qq =
∑

z∈X

|c(x, y)(∆z)|
q = |c(x, y)(∆x)|

q + |c(x, y)(∆y)|
q = 1.

Notice that the labelled partitions pseudo-metric d on X in this case is precisely the discrete
metric on X i.e. d(x, y) = 1 for all x, y ∈ X, x 6= y.

Definition 3.24 (Naive ℓq space with labelled partitions). Let X be a set and P = {∆x | x ∈ X}.

For q ≥ 1, (X,P, ℓq(P)) is called the naive ℓq space with labelled partitions of X.

Remark 3.25. Let X be a set, q ≥ 1 and G a group acting on X. Then G acts by automorphisms
on the naive ℓq space with labelled partitions of X.

In fact, if, for g ∈ G, we denote τ(g) : x 7→ gx, we have, for z ∈ X,

∆z ◦ τ(g) = ∆g−1z ∈ P,

and, for all ξ ∈ ℓq(P),

‖ξ ◦ Φτ(g)‖
q
q =

∑

x∈X

|ξ(∆gx)|
q =

∑

g−1x∈X

|ξ(∆x)|
q =

∑

x∈X

|ξ(∆x)|
q = ‖ξ‖qq.

4. Labelled partitions on Banach spaces

Every Banach space has a natural structure of space with labelled partitions and the metric
of labelled partitions of this structure is exactly the metric induced by the norm.
Let f be a K-valued function on a set B and k ∈ K. We denote f + k := {x 7→ f(x) + k}.

Definition 3.26. Let B be a Banach space and B′ be its topological dual. The set :

P = {f + k | f ∈ B′, k ∈ K}

is called the natural family of labelling functions on B.
Let c be the separation map on B associated with P. We denote :

δ(P) = {c(x, x′) | x, x′ ∈ B}.
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Remark 3.27. This definition and the fact that the natural family of labelling functions contains
the constant functions are motivated by the following : as we shall see in Lemma 3.30, a G-action
on a Banach space B by affine isometries induces an action of G on the natural family of labelling
functions on B.

Proposition 3.28. Let (B, ‖· ‖) be a Banach space and P be its natural family of labelling
functions. Then δ(P) is isomorphic to B and (B,P, δ(P)) is a space with labelled partitions
where δ(B) is viewed as an isometric copy of B. Moreover, we have, for x, x′ ∈ B :

d(x, x′) = ‖x− x′‖,

where d is the pseudo-metric of labelled partitions on (B,P, δ(P)).

Proof. Let P := {f + k | f ∈ B′, k ∈ K} and let c be the separation map on B associated
with P. Notice that for all x, x′ ∈ B, c(x − x′, 0) = c(x, 0) − c(x′, 0) = c(x, x′). Then the map
T : B → δ(B) such that x 7→ c(x, 0) is clearly a surjective linear operator. Now, we have
c(x, 0) = 0 ⇔ ∀f ∈ B′, f(x) = 0, and hence, by Hahn-Banach Theorem, T is injective. It
follows that T is an isomorphism.
The quantity ‖c(x, x′)‖

δ(P)
:= ‖x − x′‖ defines a norm on δ(P) and hence, (δ(P), ‖.‖

δ(P)
) is a

Banach space as T is an isometric isomorphism. It follows immediately that (B,P, δ(P)) is a
space with labelled partitions.

Definition 3.29. Let B be a Banach space. The space with labelled partitions (B,P, δ(P)) where
P = {f + k | f ∈ B′, k ∈ K} and δ(P) ≃ B is called the natural structure of labelled partitions
on B.

Lemma 3.30. Let G be a topological group. Then a continuous isometric affine action of G on
a Banach space B induces a continuous action of G by automorphisms on the natural space with
labelled partitions (B,P, δ(P)) on B.

Proof. Let α be a continuous isometric affine action of G on a Banach space B with linear part
π and translation part b. Let (B,P, δ(P)) be the natural space with labelled partitions on B.
Notice that for all f ∈ B′, f ◦ π(g) ∈ B′ since π is an isometric representation. Hence, for all
g ∈ G and p = f + k ∈ P :

p ◦ α(g) = f ◦ α(g) + k = f ◦ π(g) + (k + f(b(g))) ∈ P.

We denote, for g ∈ G and p ∈ P, Φg(p) = p ◦ α(g). We have, for g ∈ G and c(x, x′) ∈ δ(P),

‖c(x, x′) ◦ Φg‖δ(P)
= ‖c(α(g)x, α(g)x′)‖

δ(P)
,

= ‖α(g)x − α(g)x′‖,
= ‖π(g)(x − x′)‖,
= ‖x− x′‖,

‖c(x, x′) ◦ Φg‖δ(P)
= ‖c(x, x′)‖

δ(P)
.

It follows that G acts by automorphisms on (B,P, δ(P)) and this action is clearly continuous
since d(x, x′) = ‖x− x′‖ where d is the pseudo-metric of labelled partitions.

In the particular case of a real Banach space B, we can consider another family of labelling
functions on B which is composed of functions valued in {0, 1} ; hence, it can be tought as
characteristic functions of half spaces of the real Banach space B :
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Definition-Proposition 3.31. Let B be a real Banach space, B′ be its topological dual and
SB′ its unit sphere (for the operator norm). For f ∈ SB′ and k ∈ R, we define the function
pf,k : B → {0, 1} by, for x ∈ B :

pf,k(x) =

{
1 if f(x)− k > 0

0 otherwise.

We set P = {pf,k | f ∈ SB′, k ∈ R} and F(P) = Vect(c(x, y) | x, y ∈ B) where c is the
separation map associated with P. Then, for ξ ∈ F(P), the quantity

‖ξ‖ := sup
f∈SB′

∣∣∣∣
∫

R

ξ(pf,k)dk

∣∣∣∣

is a semi-norm on F(P) and F (P) = F(P)/{ξ | ‖ξ‖ = 0} is a Banach space isometrically
isomorphic to B. Moreover, (B,P, F (P)) is a space with labelled partitions and we have, for all
x, y ∈ B :

dP (x, y) = ‖c(x, y)‖ = ‖x− y‖B .

Proof. First, notice that for x, y ∈ B and pf,k ∈ P, we have :

c(x, y)(pf,k) = pf,k(x)− pf,k(y) =

{
±1 if f(x) > k ≥ f(y) or f(y) > k ≥ f(x)

0 otherwise.

Hence, for f ∈ SB′,

∫

R

c(x, y)(pf,k)dk =

{
f(x)− f(y) if f(x) ≥ f(y)

f(y)− f(x) if f(y) > f(x)

It follows that ‖c(x, y)‖ = supf∈SB′ |f(x)− f(y)| = ‖x− y‖B < +∞ (∗).

Now, for ξ =
∑

λic(xi, yi) ∈ F(P), ‖k‖ ≤
∑

|λi| ‖c(xi, yi)‖ < +∞, and then, ‖.‖ is a semi-norm
on F(P).
Let us now consider the quotient F (P) = F(P)/ ∼ where ξ ∼ ξ′ if, and only if ‖ξ− ξ′‖ = 0. For
λ, µ ∈ R and x, y ∈ B, we have c(λx+µy, 0) ∼ λc(x, 0)+µc(y, 0) and c(x−y, 0) ∼ c(x, y). Thus,
T : B → F (P) such that T (x) = c(x, 0) is an isomorphism and by (∗) it is isometric. Hence,
F (P) is a Banach space isometrically isomorphic to B and (B,P, F (P)) is a space with labelled
partitions.

3.3 Link with isometric affine actions on Banach spaces

In this section, we aim to prove the two statements of Theorem 1 which gives an analog of
the equivalence between proper actions on spaces with measured walls and Haagerup property in
terms of proper actions on spaces with labelled partitions and isometric affine actions on Banach
spaces ; and more particularly in the case of Lp spaces, using Hardin’s result about extension of
isometries on closed subspaces of Lp spaces.

Theorem 1.

Let G be topological group.
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1. If G acts (resp. acts properly) continuously by affine isometries on a Banach space B then
there exists a structure (G,P, F (P)) of space with labelled partitions on G such that G acts
(resp. acts properly) continuously by automorphisms on (G,P, F (P)) via its left-action on
itself. Moreover, there exists a linear isometric embedding F (P) →֒ B.

2. If G acts (resp. acts properly) continuously by automorphisms on a space with labelled
partitions (X,P, F (P)) then there exists a (resp. proper) continuous isometric affine action
of G on a Banach space B. Moreover, B is a closed subspace of F (P).

Corollary 2.

Let p ≥ 1 with p /∈ 2Z r {2} and G be a topological group. G has property PLp if, and only if,
G acts properly continuously by automorphisms on a space with labelled partitions (X,P, F (P))
where F (P) is isometrically isomorphic to a closed subspace of an Lp space.

Proof of Corollary 2. The direct implication follows immediately from 1) Theorem 1.

Now, assume G acts properly continuously by automorphisms on a space (X,P, F (P)) and
T : F (P) →֒ Lp(X,µ) is a linear isometric embedding.
By 2) Theorem 1, there is a proper continuous isometric affine action α of G on a closed subspace
B of F (P) with α(g) = π(g) + b(g). Thus, as T is a linear isometry, T (B) is a closed subspace
of Lp(X,µ) and α′ such that α′(g) = T ◦ π(g) ◦ T−1 + T (b(g)) is a continuous isometric affine
action of G on T (B). Then, by Corollary 2.10, G has property PLp.

1. Labelled partitions associated with an isometric affine action

In this part, we introduce the space with labelled partitions associated with a continuous
isometric affine action of a topological group G and we give a proof of 1) Theorem 1 by defining
an action of G by automorphisms on this structure.

Given a continuous isometric affine action on a Banach space, we consider the pullback of
the natural structure of space with labelled partitions of the Banach space on the group itself :

Definition 3.32. Let G be a topological group and α be a continuous isometric affine ac-
tion of G on a Banach space (B, ‖.‖) with translation part b : G → B. Consider the pull-
back (G,Pα, Fα(Pα)) by b of the natural space with labelled partitions (B,P, δ(P)) on B, where
P = B′ and δ(P) ≃ B.
The triple (G,Pα, Fα(Pα)) is called the space with labelled partitions associated with α.

More precisely, we have :
Pα = {f ◦ b+ k | f ∈ B′, k ∈ K} ;

Fα(Pα) ≃ Vect(b(G))
‖.‖

;

Remark 3.33. - The linear map T : Fα(Pα) →֒ B such that T : cα(g, h) 7→ b(g) − b(h) is an
isometric embedding, where cα is the separation map on G associated with Pα.

- If the continuous isometric affine action α is linear i.e. b(G) = {0}, then the space (G,Pα, Fα(Pα))
with labelled partitions associated with α is degenerated in the sense that the quotient metric space
associated with (G, d) contains a single point, Pα contains only the zero function from G to K

and Fα(Pα) = {0}.
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Proposition 3.34. Let G be a topological group and (G,P, F (P)) be the space with labelled
partitions associated with a continuous isometric affine action of G on a Banach space B.
Then the action of G on itself by left-translation induces a continuous action of G by automor-
phisms on (G,P, F (P)).

Proof. Let α be a continuous isometric affine action of G on a Banach space B with translation
part b : G → B. By Lemma 3.30, G acts continuously on the natural space with labelled
partitions on (B,P, δ(P)) on B. Moreover, the map b is G-equivariant since we have, for g, h ∈ G,
b(gh) = α(g)b(h). By Lemma 3.14, it follows that theG-action on itself by left-translation induces
a continuous action by automorphisms on (G,P, F (P)).

Proof of 1) Theorem 1. Assume α is continuous isometric affine action of G on a Banach space
(B, ‖.‖) with translation part b and let G.
By Proposition 3.34, the G-action by left-translation on itself induces a continuous action by
automorphisms on the space with labelled partitions associated with α, (G,Pα, Fα(Pα)).
Moreover, assume α is proper. Then, by Remark 3.33, we have :

dα(g, e) = ‖b(g)‖ −→
g→∞

+∞,

and hence, the G-action by automorphisms on (G,Pα, Fα(Pα)) is proper.

2. From actions on a space with labelled partitions to isometric affine actions

We prove here statement 2) of Theorem 1 by giving a (non-canonical) way to build a pro-
per continuous isometric affine action on a Banach space given a proper continuous action by
automorphisms on space with labelled partitions.

Lemma 3.35. Let G be a topological group, (X,P, F (P)) be a space with labelled partitions and
we denote E = Vect(c(x, y) | x, y ∈ X) where c is the separation map associated with P.
If G acts continuously by automorphisms on (X,P, F (P)), then, for all x, y ∈ X, (g, h) 7→
c(gx, hy) is continuous from G×G to E.

Proof. Consider on the subspace E of F (P) the topology given by the norm ‖.‖ of F (P). If
X×X is endowed with the product topology of (X, d), as said in Remark 3.6, c : X×X → E is
continuous and, since the G-action onX is strongly continuous, for all x, y ∈ X, (g, h) 7→ (gx, hy)
is continuous. Then, by composition, for all x, y ∈ X, (g, h) 7→ c(gx, hy) is continuous.

Proposition 3.36. Let G be a topological group acting continuously by automorphisms on a
space with labelled partitions (X,P, F (P)). Then there exists a continuous isometric affine action
of G on a Banach subspace B of F (P).

More precisely, B = Vect(c(x, y) | x, y ∈ X)
‖.‖

where c is the separation map associated with P
and ‖.‖ is the norm of F (P), and moreover, the linear part π and the translation part b of the
affine action are given by, for a fixed x0 ∈ X :

π(g)ξ = ξ ◦ Φτ(g) for g ∈ G and ξ ∈ B;

and
b(g) = c(gx0, x0) for g ∈ G.
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Proof. Let τ be the G-action on X.
By Definition 3.7 and Remark 3.10, the map Φτ(g) : P → P such that Φτ(g)(p) = p◦τ(g) induces
a linear representation π of G on F (P) given by, for ξ ∈ F (P) and g ∈ G :

π(g)ξ = ξ ◦ Φτ(g).

By the second requirement of Definition 3.7, we have ‖π(g)ξ‖ = ‖ξ‖. Thus, π is an isometric
linear representation of G on F (P).

Consider E = Vect(c(x, y) | x, y ∈ X). Then the Banach subspace B = E
‖.‖

of F (P) is stable
under π since π(g)(c(x, y)) = c(gx, gy) for x, y ∈ X, g ∈ G. Let us show that the representation
π of G on B is strongly continuous. Let ξ =

∑n
i=1 λic(xi, yi) ∈ E. We have, for g ∈ G,

π(g)ξ = ξ ◦Φτ(g) =

n∑

i=1

λic(gxi, gyi) ∈ E,

and, by Lemma 3.35, for every i, g 7→ c(gxi, gyi) is continuous.

Hence, g 7→
∑n

i=1 λic(gxi, gyi) = π(g)ξ is continuous. Finally, by density, for all ξ ∈ B, g 7→ π(g)ξ
is continuous from G to B.

Now, let us define the translation part of the action. Fix x0 ∈ X and set, for all g ∈ G,
b(g) = c(gx0, x0) ∈ E. We claim b is a continuous 1-cocycle relative to π ; indeed, we have, for
g ∈ G, x, y ∈ X, c(gx, gy) = c(x, y) ◦Φτ(g) = π(g)c(x, y) and then, for g, h ∈ G,

b(gh) = c(ghx0, x0) = c(ghx0, gx0) + c(gx0, x0) = π(g)b(h) + b(g).

The continuity of b follows immediatly from Lemma 3.35.
Hence, the morphism α : G → Isom(B) ∩ Aff(B) defined by, for all g ∈ G, ξ ∈ B, α(g)ξ =
π(g)ξ + b(g) is a continuous isometric affine action of G on B.

Remark 3.37. In the case where G is discrete, we do not have to find a subspace of F (P) on
which the representation is strongly continuous ; then we have the following statement :
If G discrete acts by automorphisms on (X,P, F (P)), then there exists an isometric affine action
of G on F (P).

Proof of 2) Theorem 1. Assume G acts properly continuously on a space with labelled partitions
(X,P, F (P)).

Consider the action α on the Banach subspace B = E
‖.‖

given by prop 3.36, where E =
Vect(c(x, y) | x, y ∈ X) and α(g)ξ = π(g)ξ + b(g), for g ∈ G, ξ ∈ B.

Then we have, if we denote by d the pseudo-metric of labelled partitions on X :

‖b(g)‖ = ‖c(gx0, x0)‖P = d(gx0, x0) −→
g→∞

∞

since the action of G on (X,P, F (P)) is proper, and hence, α is a proper continuous isometric
affine action of G on B.
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4 Labelled partitions on a direct sum

In this section, we define a space with labelled partitions on the direct sum of a countable
family of spaces with labelled partitions and we build on it a proper action given by proper
actions on each factor.

4.1 Natural space with labelled partitions on a direct sum

Given a family of space with labelled partitions, we give a natural construction of a space
with labelled partitions on the direct sum of this family. A similar construction in the case of
spaces with measured walls can be found in [CMV04].

Definition 4.1. Let I be an index set, (Xi)i∈I be a family of non empty sets and fix x0 =
(x0i )i∈I ∈

∏
i∈I Xi.

The direct sum of the family (Xi)i∈I relative to x0 is defined by :

x0
⊕

i∈I

Xi :=

{
(xi)i∈I ∈

∏

i∈I

Xi | xi 6= x0i for finitely many i ∈ I

}
.

For i ∈ I, we denote by πX
Xi

: X → Xi the canonical projection from the direct sum to the factor
Xi.

For x = (xi)i∈I ∈ x0
⊕

i∈I Xi, the support of x is the finite subset of I :

supp(x) = {i ∈ I | xi 6= x0i }.

Definition 4.2. Let I be an index set, ((Xi,Pi, Fi(Pi)))i∈I be a family of spaces with labelled
partitions and fix x0 = (x0i )i∈I ∈

∏
i∈I Xi. We denote X = x0

⊕
i∈I Xi.

Let i ∈ I. For pi ∈ Pi, we define the labelling function p⊕i

i : X → K by :

p⊕i

i = pi ◦ π
X
Xi
.

i.e., for x = (xi)i∈I ∈ X, p⊕i

i (x) = pi(xi).

We denote P⊕i
i = {p⊕i

i | pi ∈ Pi}, and we call the set

PX =
⋃

i∈I

P⊕i

i

the natural family of labelling functions on X (associated with the family (Pi)i∈I).

Let X1,X2 be non empty sets and P1,P2 be families of labelling functions on, respectively,
X1 and X2.
In terms of partitions, if P1 is the partition of X1 associated with p1 ∈ P1, the partition P⊕1

1 of
X1 ×X2 associated with p⊕1

1 is :

P⊕1
1 = {h×X2 | h1 ∈ P1},

and similarly, for p2 ∈ P2, we have :

P⊕2
2 = {X1 × k | k1 ∈ P2}.
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Partitions for the direct product

Definition 4.3. Let I be a countable index set, ((Xi,Pi, Fi(Pi)))i∈I be a family of spaces with
labelled partitions and fix x0 = (x0i )i∈I ∈

∏
i∈I Xi. We denote X = x0

⊕
i∈I Xi.

Let i ∈ I. For ξi ∈ Fi(Pi), we denote ξ⊕i

i : PX → K the function :

ξ⊕i
i (p) =

{
ξi(pi) if p = p⊕i

i ∈ P⊕i

i

0 if p = p
⊕j

j ∈ P
⊕j

j with i 6= j

Let q ≥ 1. We denote Fq(PX) the closure of

Eq(PX) :=

{
∑

i∈I

ξ⊕i
i | ξi ∈ Fi(Pi) with ξi 6= 0 for a finite number of i ∈ I

}
,

endowed with the norm ‖.‖q defined by, for ξ =
∑

i∈I ξ
⊕i
i :

‖ξ‖q :=

(
∑

i∈I

‖ξi‖
q
Fi(Pi)

) 1
q

.

The vector space Fq(PX) is called the q-space of functions on PX of X.

Proposition 4.4. Let I be a countable index set and ((Xi,Pi, Fi(Pi)))i∈I be a family of spaces
with labelled partitions and fix x0 = (x0i )i∈I ∈

∏
i∈I Xi. We denote X = x0

⊕
i∈I Xi.

Then (Fq(PX), ‖.‖q) is isometrically isomorphic to (
⊕q

i∈I Fi(Pi), ‖.‖q). In particular, Fq(PX) is
a Banach space.
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4.2 Action on the natural space with labelled partitions of the direct sum

Let I be an index set and (Hi)i∈I be a family of groups. We denote eW = (eHi
)i∈I where,

for i ∈ I, eHi
is the identity element of Hi.

We simply denote
⊕

i∈I

Hi the group W =
eW⊕

i∈I

Hi whose identity element is eW .

Proposition 4.5.

Let I be a countable set and (Hi)i∈I be a family of groups such that, for each i ∈ I, Hi acts by
automorphisms on a space with labelled partitions (Xi,Pi, Fi(Pi)). We denote X = x0

⊕
i∈I Xi

and W =
⊕

i∈I Hi.

Let q ≥ 1. Then W acts by automorphisms on the natural space with labelled partitions on the
direct sum (X,PX , Fq(PX)) via the natural action of W on X.

Proof. We denote by τ the W -action on X and for w ∈ W , p ∈ PX , Φτ(w)(p) := p ◦ τ(w) and,
for i ∈ I, we denote by τi the Hi-action on X and for hi ∈ Hi, pi ∈ Pi, Φτi(hi)(pi) := pi ◦ τi(hi).

Let p ∈ PX =
⋃

i∈I P
⊕i
i and w = (hi)i∈I ∈ W . Then there exists i ∈ I and pi ∈ Pi such that

p = p⊕i
i , and we have :

Φτ(w)(p
⊕i

i ) = (Φτi(hi)(pi))
⊕i ∈ P⊕i

i ⊂ PX ,

since Φτi(hi)(pi) belongs to Pi.

For ξ =
∑

i∈I ξ
⊕i

i ∈ Eq(PX), we have :

ξ ◦Φτ(w)(p) = ξ(p⊕i
i ◦ τ(w))

= ξ((pi ◦ τi(hi))
⊕i)

= ξ⊕i

i ((pi ◦ τi(hi))
⊕i)

= ξi(pi ◦ τi(hi))

= ξi ◦ Φτi(hi)(pi)

ξ ◦Φτ(w)(p) = (ξi ◦Φτi(hi))
⊕i(p⊕i

i ),

And hence,

ξ ◦Φτ(w) =
∑

i∈I

(ξi ◦Φτi(hi))
⊕i ∈ Fq(PX).

By completeness of Fq(PX), for all ξ ∈ Fq(PX), ξ ◦Φτ(w) ∈ Fq(PX).

Moreover, for ξ =
∑

i∈I ξ
⊕i

i ∈ Eq(PX), we have :

‖ξ ◦Φτ(w)‖
q
q =

∑

i∈I

‖ξi ◦ Φτi(hi)‖
q
Fi(Pi)

=
∑

i∈I

‖ξi‖Fi(Pi)
= ‖ξ‖qq,

since, for all i ∈ I, ‖ξi ◦ Φτi(hi)‖Fi(Pi)
= ‖ξi‖Fi(Pi)

.

Thus, by density of Eq(PX) in Fq(PX), for all ξ ∈ Fq(PX), ‖ξ ◦ Φτ(w)‖q = ‖ξ‖q.

It follows that W acts by automorphisms on (X,PX , Fq(PX)).
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When I is finite,X = x0
⊕

i∈I Xi is simply the direct sum of theXi and does not depend on x0.
In this case, proper continuous actions on each factor (Xi,Pi, Fi(Pi)) induce a proper continuous
action on the natural space with labelled partitions of the direct sum (X,PX , Fq(PX)) :

Proposition 4.6. Let n ∈ N∗. For i ∈ I = {1, ..., n}, let Hi be a topological group acting properly
continuously on a space with labelled partitions (Xi,Pi, Fi(Pi)) ; we denote X = X1 × ... ×Xn

and W = H1 × ...×Hn.

Let q ≥ 1. Then W acts properly continuously by automorphisms on the natural space with
labelled partitions of the direct product (X,PX , Fq(PX)) via the natural action of W on X.

Proof. We consider the group W endowed with the product topology of the Hi’s. We denote by
c the separation map associated with PX and, for i ∈ I, ci the separation map associated with
Pi. By Proposition 4.5, W acts by automorphisms on (X,PX , Fq(PX)). Let us show that this
action is proper. For x = (x1, ..., xn) ∈ X and for w = (h1, ..., hn) ∈ W , we have :

‖c(wx, x)‖qq =
n∑

i=1

‖ci(hixi, xi)‖
q
Fi(Pi)

.

Thus, if ‖c(wx, x)‖q ≤ R for some R ≥ 0, then for i = 1, ..., n, ‖ci(hixi, xi)‖Fi(Pi)
≤ R.

Hence, for every R ≥ 0 :
{w = (hi) ∈ W | ‖c(wx, x)‖q ≤ R} is a subset of

∏n
i=1{hi ∈ Hi | ‖ci(hixi, xi)‖Fi(Pi)

≤ R} which
is a relatively compact set in W since each Hi acts properly on (Xi,Pi, Fi(Pi)). It follows that
W acts properly on (X,PX , Fq(PX)).

It remains to prove that the W -action on (X, d) is strongly continuous. Remark that d =

(
∑n

i=0 d
q
i )

1
q , then, the topology of (X, d) is equivalent to the product topology of the Xi’s on X.

Let x = (xi)i∈I ∈ X. We denote by τx : W → X the function w 7→ wx. For all i ∈ I,
πX
Xi

◦ τx : w → hixi is continuous since hi → hixi is continuous ; hence it follows that τx is
continuous.

If I is countably infinite, even if each Hi-action on (Xi,Pi, Fi(Pi)) is proper, W does not
act properly on the natural space with labelled partitions on the direct sum (X,PX , Fq(PX))
in general. In fact, let C be a positive real constant, and assume there exists, in each Hi, an
element hi such that ‖ci(hix

0
i , x

0
i )‖Fi(Pi)

≤ C. For j ∈ I, the element δj(hj) of W such that

πW
Hi
(δj(hj)) = eHi

if i 6= j and πW
Hj

(δj(hj)) = hj leaves every finite set of W when j leaves every
finite set of I, but :

‖c(δj(hj)x0, x0)‖Fq(PX)
= ‖ci((hj)x

0
i , x

0
i )‖Fi(Pi)

≤ C.

And then, W does not act properly on (X,PX , Fq(PX)).

To make W act properly on a space with labelled partitions in the case where W is endowed
with the discrete topology, we have to define a structure of labelled partitions on W such that
the labelled partitions metric between eW and w goes to infinity when the support of w leaves
every finite set in I. To build this structure, we scale every labelling function of the naive ℓq

space with labelled partitions on each factor Hi by a weight depending on i which grows as i
leaves every finite set in I.
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Notation 4.7. Let I be a countable index set and X = x0
⊕

i∈I Xi be a direct sum of sets Xi’s.

We say that, for x ∈ X, supp(x) leaves every finite set in I or supp(x) → ∞ in I if there exists
j ∈ supp(x) which leaves every finite set in I.

Definition 4.8. Let X be a set and w be a non-negative real.
We set, for x ∈ X :

(w)∆x := 2−
1
qwδx : X → K,

where δx : X → {0, 1} is the Dirac function at x, and we call the set

(w)∆ := {(w)∆x | x ∈ X},

the w-weighted naive family of labelling functions on X.

Proposition 4.9. Let X be a set and w be a non-negative real.

Let q ≥ 1. Then the triple (X, (w)∆, ℓq((w)∆)) is a space with labelled partitions.
Moreover, if a group H acts on X, then H acts by automorphisms on (X, (w)∆, ℓq((w)∆)).

Proof. It is a straightfoward generalization of Proposition 3.23 and Remark 3.25.

Subsquently, for a countably infinite set I, we consider a function φ : I → R+ such that
φ(i) −→

i→∞
+∞ (such a function always exists when I is countably infinite : for instance, take any

bijective enumeration function φ from I to N).

Lemma 4.10. Let I be a countably infinite set and (Hi)i∈I be a family of countable discrete
groups and we denote W the group

⊕
i∈I Hi endowed with the discrete topology. Consider, on

each Hi, the φ(i)-weighted naive family of labelling functions (φ(i))∆ and we denote by (φ)∆ =⋃
i∈I

(φ(i))∆⊕i the natural set of labelling functions associated with ((φ(i))∆)i∈I .

Let q ≥ 1. Then, W acts by automorphisms on the natural space with labelled partitions on the
direct sum (W, (φ)∆,Fq(

(φ)∆)).
Moreover, we have :

‖cφ(w, eW )‖
Fq(

(φ)∆)
→ +∞ when supp(w) → ∞ in I,

where cφ is the separation map associated with (φ)∆.

Proof. By Proposition 4.5, W acts by automorphisms on (W, (φ)∆,Fq(
(φ)∆)) and we have, for

w = (hi), w
′ = (h′i) ∈ W :

‖cφ(w,w
′)‖q

Fq(
(φ)∆)

=
∑

i∈I

‖cφ(i)(hi, h
′
i)‖

q
q

=
∑

i∈supp(w−1w′)

φ(i)q.

Let w ∈ W such that supp(w) → ∞ in I. Then there exists j ∈ supp(w) such that j → ∞ in I
and hence :

‖cφ(w, eW )‖q
Fq(

(φ)∆)
=

∑

i∈supp(w)

φ(i)q ≥ φ(j)q → +∞.
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Proposition 4.11. Let I be a countably infinite set and (Hi)i∈I be a family of countable discrete
groups such that, for each i ∈ I, Hi acts properly by automorphisms on a space with labelled
partitions (Xi,Pi, Fi(Pi)). We denote X = x0

⊕
i∈I Xi and W =

⊕
i∈I Hi endowed with the

discrete topology.

Let q ≥ 1. Then there exists a structure of space with labelled partitions (Y,PY , Fq(PY )) on
which W acts properly by automorphisms.

More precisely, (Y,PY , F (PY )) is the natural space with labelled partitions on the direct product
Y = X ×W where :

– on X, we consider the natural space with labelled partitions on the direct sum of the family
((Xi,Pi, Fi(Pi)))i∈I ;

– on W , we consider the natural space with labelled partitions on the direct sum of the
family ((Hi,

(φ(i))∆, ℓq((φ(i))∆)))i∈I where for i ∈ I, (φ(i))∆ is the φ(i)-weighted naive family
of labelling functions on Hi.

Proof. By Proposition 4.5,W acts by automorphisms on both (X,PX , Fq(PX)) and (W, (φ)∆, ℓq((φ)∆)).
We set Y = X ×W and consider the natural space with labelled partitions (Y,PY , Fq(PY )) on
the direct product where :

P = P⊕1
X ∪ (φ)∆⊕2 ,

and
Fq(P) ≃ Fq(PX)⊕ ℓq((φ)∆).

Then, by Proposition 4.5, W × W acts by automorphisms on (Y,PY , Fq(PY )) via the action
(w1, w2).(x,w) = (w1.x, w2w). Hence, W acts by automorphisms on (Y,PY , Fq(PY )), where W
is viewed as the diagonal subgroup {(w,w) | w ∈ W} < W ×W .

It remains to prove that the W -action on (Y,PY , Fq(PY )) is proper. We have, for w = (hi) ∈
W :

‖cPY
(w.(x0, eW ), (x0, eW ))‖q

Fq(PY )
= ‖cPX

(w.x0, x0)‖
q
Fq(PX )

+ ‖cφ(w, eW )‖qq

=
∑

i∈supp(w)

‖c(hix
0
i , x

0
i )‖

q
Fi(Pi)

+
∑

i∈supp(w)

φ(i)q.

Hence, for R ≥ 0, ‖cPY
(w.(x0, eW ), (x0, eW ))‖

Fq(PY )
≤ R implies that ‖c(hix

0
i , x

0
i )‖Fi(Pi)

≤ R and

φ(i) ≤ R for all i ∈ supp(w). Thus, for all R ≥ 0, {w | ‖cPY
(w.(x0, eW ), (x0, eW ))‖

Fq(PY )
≤ R}

is a subset of
{
w = (hi) | supp(w) ⊂ {j | φ(j) ≤ R} and {hi ∈ Hi | ‖c(hix

0
i , x

0
i )‖Fi(Pi)

≤ R}
}
,

which is a finite set as {j | φ(j) ≤ R} is finite and by properness of the Hi’s actions, each
{hi ∈ Hi | ‖c(hix

0
i , x

0
i )‖Fi(Pi)

≤ R} is finite.
It follows that W acts properly on (Y,PY , Fq(PY )).

4.3 Action of a semi-direct product on a space with labelled partitions

Definition 4.12 (compatible action). Let G1, G2 be groups and ρ : G2 → Aut(G1) be a mor-
phism of groups.
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Consider a set X on which G1 and G2. We say that the G2-action is compatible with the
G1-action with respect to ρ if, for g1 ∈ G1, g2 ∈ G2, we have, for all x ∈ X :

g2g1g
−1
2 x = ρ(g2)(g1)x.

Example 4.13. If ρ : G2 → Aut(G1) is a morphism, then the action ρ of G2 on G1 is compatible
with the action of G1 on itself by translation with respect to ρ.

Proposition 4.14. Let (X1,P1, F1(P1)),(X2,P2, F2(P2)) be spaces with labelled partitions and
G1, G2 be topological groups acting continuously by automorphisms on, respectively,
(X1,P1, F1(P1)) and (X2,P2, F2(P2)) via τ1 and τ2.
Let ρ : G2 → Aut(G1) be a morphism of groups such that (g1, g2) 7→ ρ(g2)g1 is continuous for
the product topology on G1 ×G2.

Assume that there exists a continuous action by automorphisms of G1⋊ρG2 on X1 which extends
the G1 action.

Then the semi-direct product G1⋊ρG2 acts continuously by automorphisms on the natural struc-
ture of labelled partitions (X1 ×X2,P, Fq(P)) on the direct product of X1 ×X2.

Moreover, if, for i = 1, 2, Gi acts properly on (Xi,Pi, Fi(Pi)), then G1 ⋊ρ G2 acts properly on
(X1 ×X2,P, F (P)).

Proof. Let us denote by τ1 the G1-action on X1, by τ2 the G2-action on X2 and by ρ̃ the G2-
action on G1 defined by the restriction on G2 of the G1⋊ρG2-action on X1. Then ρ̃ is compatible
with τ1 with respect to ρ.
We denote by τ the action of G = G1 ⋊ρ G2 on X = X1 ×X2 defined by :

τ(g1, g2)(x1, x2) = (τ1(g1)(ρ̃(g2)x1), τ2(g2)x2).

We show that, via this action, G acts by automorphisms on the direct product of spaces with
labelled partitions (X,P, Fq(P)) where P = P⊕1

1 ∪ P⊕2
2 and Fq(P) ≃ F1(P1)⊕ F2(P2) endowed

with the q-norm of the direct sum for q ≥ 1.

Let p ∈ P and g = (g1, g2) ∈ G. If p = p⊕1
1 ∈ P⊕1

1 , then, for all x = (x1, x2) ∈ X, we have :

Φτ(g)(p)(x) = p(τ(g)x)

= p⊕1
1 (τ1(g1)(ρ̃(g2)x1), τ2(g2)x2)

= p1(τ1(g1)(ρ̃(g2)x1))

= p1 ◦ τ1(g1) ◦ ρ̃(g2)(x1)

Φτ(g)(p)(x) = (p1 ◦ τ1(g1) ◦ ρ̃(g2))
⊕1(x1, x2),

and since G1 acts by automorphisms on (X1,P1, F1(P1)) via τ1, we have p1 ◦ τ1(g1) ∈ P1, and
G2 acts by automorphisms on (X1,P1, F1(P1)) via ρ̃, then p1 ◦ τ1(g1) ◦ ρ̃(g2) ∈ P1.
Hence, Φτ(g)(p) = (p1 ◦ τ1(g1) ◦ ρ̃(g2))

⊕1 belongs to P.

For p = p⊕2
2 ∈ P⊕2

2 , we have Φτ(g)(p) = (p2 ◦ τ2(g2))
⊕2 which belongs to P since G2 acts by
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automorphisms on (X2,P2, F2(P2)) via τ2.
Then, for all g ∈ G and all p ∈ P,

Φτ(g)(p) = p ◦ τ(g) ∈ P.

Let us fix some notations. We denote, for g1 ∈ G1, g2 ∈ G2 :

- Φ
(1)

τ1(g1)
: P1 → P1 the map Φ

(1)

τ1(g1)
(p1) = p1 ◦ τ1(g1) ;

- Φ
(ρ̃)

ρ̃(g2)
: P1 → P1 the map Φ

(ρ̃)

ρ̃(g2)
(p1) = p1 ◦ ρ̃(g2) ;

- Φ
(2)

τ2(g2)
: P2 → P2 the map Φ

(2)

τ2(g2)
(p2) = p2 ◦ τ2(g2).

Let ξ be in F (P) and g = (g1, g2) ∈ G. We have, for all p1 ∈ P1 and all p2 ∈ P2 :

ξ ◦ Φτ(g)(p
⊕1
1 ) = (ξ1 ◦ Φ

(ρ̃)

ρ̃(g2)
◦ Φ

(1)

τ1(g1)
)⊕1(p⊕1

1 ),

and
ξ ◦Φτ(g)(p

⊕2
2 ) = (ξ1 ◦ Φ

(2)

τ2(g2)
)⊕2(p⊕2

2 ).

Hence, ξ ◦ Φτ(g) = (ξ1 ◦ Φ
(ρ̃)

ρ̃(g2)
◦ Φ

(1)

τ1(g1)
)⊕1 + (ξ2 ◦Φ

(2)

τ2(g2)
)⊕2 and we have :

‖ξ ◦ Φτ(g)‖
q
q = ‖ξ1 ◦Φ

(ρ̃)

ρ̃(g2)
◦ Φ

(1)

τ1(g1)
‖q
F1(P1)

+ ‖ξ2 ◦ Φ
(2)

τ2(g2)
‖q
F2(P2)

= ‖ξ1‖
q
F1(P1)

+ ‖ξ2‖|
q
F2(P2)

‖ξ ◦ Φτ(g)‖q = ‖ξ‖q

It follows that G1 ⋊ρ G2 acts by automorphisms on the space with labelled partitions (X1 ×
X2,P, Fq(P)).

It remains to check this action by automorphisms is continuous, i.e. for all x ∈ X, g 7→ τ(g)x is
continuous.

As a set G1 ⋊ρ G2 is simply G1 × G2 and since (g1, g2) 7→ ρ(g2)g1 is continuous, the product
topology on G1 × G2 is compatible with the group structure of G1 ⋊ρ G2 (see [Bou71], III.18
Proposition 20).
Moreover, τ1, τ2 and ρ̃ are strongly continuous, then, for all (x1, x2) ∈ X, the map (g1, g2) →
(τ(g1)(ρ̃(g2)x1), τ2(g2)x2) is continuous from G1 × G2 endowed with the product topology to
(X, d) where d is the labelled partitions pseudo-metric.
Hence, G1 ⋊ρ G2 acts continuously by automorphisms on (X,P, Fq(P)).

Assume, for i = 1, 2, Gi acts properly on (Xi,Pi, Fi(Pi)) via τi, and we denote by ci the separation
map associated with Pi.
Fix x0 = (x1, x2) ∈ X1 ×X2.
The following egality holds for every g = (g1, g2) ∈ G1 ⋊ρ G2 :

‖c(τ(g)x0, x0)‖
q
q = ‖c1(τ1(g1)(ρ̃(g2)x1), x1)‖

q
F1(P1)

+ ‖c2(τ2(g2)x2, x2)‖
q
F2(P2)

.

Since G1 ⋊ρ G2 is endowed with the product topology of G1 and G2, g = (g1, g2) → ∞ in
G1 ⋊ρ G2 if, and only if, g1 → ∞ in G1 or g2 → ∞ in G2. Hence, we have two disjoint cases :

First case : g1 → ∞ in G1 and g2 belongs to a compact subset K2 of G2.
By continuity of g′2 7→ ‖c(ρ̃(g′2)x1, x1)‖F1(P1)

, there exists C(K2) ≥ 0 such that, for every g′2 ∈ K2,

‖c(ρ̃(g′2)x1, x1)‖F1(P1)
≤ C(K2), and, hence,
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‖c(τ(g1)ρ̃(g2)x1, ρ̃(g2)x1)‖F1(P1)
≤ ‖c(τ1(g1)ρ̃(g2)x1, x1)‖F1(P1)

+ ‖c(ρ̃(g2)x1, x1)‖F1(P1)

≤ ‖c(τ(g1)ρ̃(g2)x1, x1)‖F1(P1)
+ C(K2).

But, since G1 acts properly on (X1,P1, F1(P1)), ‖c(τ(g1)ρ̃(g2)x1, ρ̃(g2)x1)‖F1(P1)
−→
g1→∞

+∞, and

then,
‖c(τ(g1)ρ̃(g2)x1, x1)‖F1(P1)

−→
g1→∞

+∞.

It follows that ‖c(τ(g)x0, x0)‖q −→
g1→∞

+∞.

Second case : g2 → ∞ in G2.
We have ‖c2(τ2(g2)x2, x2)‖F2(P2)

−→
g2→∞

+∞ and then ‖c(τ(g)x0, x0)‖q → +∞.

Finally, as required, we have
‖c(τ(g)x0, x0)‖q −→

g→∞
+∞,

and then, G1 ⋊ρ G2 acts properly by automorphisms on (X,P, Fq(P)).

5 Wreath products and property PL
p

Using Proposition 4.14, we simplify a part of the proof of Th 6.2 in [CSV12] where Cornulier,
Stalder and Valette establish the stability of the Haagerup property by wreath product ; and
we generalize it in the following way : the wreath product of a group with property PLp by a
Haagerup group has property PLp.

Theorem 3.

Let H,G be countable discrete groups, L be a subgroup of G and p > 1, with p /∈ 2Z r {2}. We
denote by I the quotient G/L and W =

⊕
I H. Assume that G is Haagerup, L is co-Haagerup

in G and H has property PLp.
Then the permutational wreath product H ≀I G = W ⋊G has property PLp.

5.1 Permutational wreath product

We first introduce the notion of permutational wreath product :

Definition 5.1. Let H,G be countable groups, I be a G-set and W =
⊕

i∈I H. The permuta-
tional wreath product H ≀I G is the group :

H ≀I G := W ⋊ρ G,

where G acts by shift on W via ρ i.e. ρ(g) : (hi)i∈I 7→ (hg−1i)i∈I , for g ∈ G.

When I = G, H ≀G G is simply called wreath product and is denoted H ≀G.

5.2 Property PL
p for the permutational wreath product

To prove Theorem 3, we need the following structure of space with measured walls relative
to the wreath product built in [CSV12], Theorem 4.2 (see [CSV12] § 6.1 for examples of co-
Haagerup subgroups) :
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Definition 5.2. Let G be a group and L be subgroup of G. We say that L is co-Haagerup in G
if there exists a proper G-invariant conditionally negative definite kernel on G/L.

Theorem 5.3 (Cornulier, Stalder, Valette). Let H,G be countable discrete groups and let L be
a subgroup of G. We denote by I the quotient G/L and W =

⊕
I H.

Suppose that G is Haagerup and that L is co-Haagerup in G.
Then there exists a structure (W × I, µ) of space with measured walls on W × I, with wall
pseudo-metric denoted by dµ, on which W ⋊ G acts by automorphisms and which satisfies, for
any x0 = (w0, i0) ∈ W × I and for all g ∈ G :

dµ((w, g)x0, x0) → +∞ when w ∈ W is such that supp(w) → ∞ in I.

Remark 5.4. The property “dµ((w, g)x0, x0) → +∞ when w ∈ W is such that supp(w) → ∞
in I“ can be reformulated as follows :
For all R ≥ 0, there exists a finite set JR ⊂ I such that, for (w, g) ∈ H ≀I G,

dµ((w, g)x0, x0) ≤ R implies supp(w) ⊂ JR.

Lemma 5.5. Let H,G be countable discrete groups, L be a subgroup of G and q ≥ 1. We denote
by I the quotient G/L and W =

⊕
I H. Suppose that G is Haagerup, L is co-Haagerup in G

and H has property PLq.
Then W and G acts by automorphisms on a space (X,P, F (P)) with labelled partitions such
that :

– the W -action is proper,

– the G-action is compatible with the W -action,

– the Banach space F (P) is isometrically isomorphic to a Banach subspace of a Lq space.

Proof. Consider the W ⋊G-action on the space with measured walls (W × I, µ) given by Propo-
sition 5.3. Then, by Proposition 3.17, W ⋊G acts by automorphisms on the space with labelled
partitions (W × I,Pµ, L

q(Pµ, µ)). Let y0 = (eW , i0) ∈ W × I. The separation map cµ associated
with Pµ satisfies :

‖cµ((w, g)y0, y0)‖
q
q = dµ((w, g)y0, y0).

Now, consider the structure of space with labelled partitions on H given by its proper isometric
affine action on a space Lq(E, ν). By Proposition 4.5, W acts by automorphisms on the natural
structure of space with labelled partitions (W,PW , Fq(PW )) of the direct sum of spaces with
labelled partitions on H. Moreover, G acts by automorphisms on (W,PW , Fq(PW )) by shift via
its action on I.

We denote X = (W × I)×W and consider the space with labelled partitions (X,P, F (P)) given
by the direct product of spaces with labelled partitions (W×I,Pµ, L

q(Pµ, µ)) and (W,PW , Fq(PW )).
Then we have actions by automorphisms τW of W and τG on X given by, for x = (w1, i, w2) ∈ X,
w ∈ W and g ∈ G :

τW (w)x = (ww1, i, ww2) and τG(g)x = (ρ(g)w1, gi, ρ(g)w2).

The action τG is clearly compatible with τW since W ⋊ρ G acts naturally on W and on W × I.
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The Banach space F (P) is isometrically isomorphic to the q-direct sum Lq(Pµ, µ) ⊕ Fq(PW ),
then F (P) is isometrically isomorphic to a Banach subspace of Lq(Pµ, µ) ⊕ (

⊕q
I L

q(E, ν)). It
follows that F (P) is isometrically isomorphic to a Banach subspace of a Lq space. We denote
x0 = (eW , i0, eW ) ∈ X. We have, for w = (hi)i∈I ∈ W :

‖c(τW (w)x0, x0)‖
q
F (P)

= ‖cµ((w, i0), (eW , i0))‖
q
q + ‖cPW

(w, eW )‖q
Fq(PW )

= dµ((w, eG)i0, i0) +
∑

i∈supp(w)

‖cPH
(hi, eH)‖q

FH (PH )

Hence, W acts properly by automorphisms on (X,P, F (P)) : indeed, for R ≥ 0 and w = (hi) ∈
W , ‖c(τW (w)x0, x0)‖F (P)

≤ R implies dµ((w, eG)i0, i0) ≤ Rq and ‖cPH
(hi, eH)‖

FH (PH )
≤ R. It

follows that, for R ≥ 0 and JRq ⊂ I as in Remark 5.4, {w ∈ W | ‖c(τW (w)x0, x0)‖F (P)
≤ R} is

a subset of :
{
w = (hi) | supp(w) ⊂ JRq and {hi ∈ H | ‖cPH

(hi, eH)‖
FH (PH )

≤ R}
}
,

which is a finite set as JRq is a finite set and H-action is proper.

Proof of Theorem 3. By Lemma 5.5, W and G act by automorphisms on a space (X,P, F (P))
with labelled partitions such that the W -action is proper, and the G-action is compatible with
the W -action with respect to ρ. Moreover, since G is Haagerup, G acts properly by automor-
phisms on a space (Y,P ′, F ′(P ′)) with labelled partitions where F ′(P ′) isometrically isomorphic
to a Lq space.
Hence, by Theorem 4.14, H ≀I G = W ⋊ρ G acts properly by automorphisms on a space
(Z,PZ , FZ(PZ)) where FZ(PZ) is isometrically isomorphic to F (P)⊕ F ′(P ′) endowed with the
q-norm of the direct sum. It follows that FZ(PZ) is isometrically isomorphic to a Banach sub-
space of a Lq space.
Thus, by Corollary 2, H ≀I G has property PLq.

6 Amalgamated free product

In this section, we develop tools around the notion of tree of spaces in order to build a
structure of space with labelled partitions on which an amalagmated free product acts by auto-
morphisms given actions of the factors on some spaces with labelled partitions.

6.1 Labelled partitions on a tree of spaces

A tree is a pair of sets T = (V,E), where V is the set of vertices and E is the set of edges,
together with an injective map E → {{v,w} | v 6= w ∈ V } ; and satisfies that every two vertices
are connected by a unique edge path, that is, a path without backtracking.
The set of vertices V can be endowed with a natural metric dT : the distance between two
vertices is the number of edges in the edge path joining them. Moreover, we say that a vertex
u is between v and w in V if u is an endpoint of some edge which belongs to the edge path
between v and w.
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Definition 6.1. Let T = (V,E) be a tree, (Xv)v∈V and (Xe)e∈E be collections of non empty sets
such that there exists, for all e = {v,w} ∈ E :

σe,v : Xe −֒→ Xv and σe,w : Xe −֒→ Xw.

The triple
(
T, (Xv)v∈V , (Xe)e∈E

)
is called a tree of spaces. We define the total space X asso-

ciated with this tree of spaces as the disjoint union of the Xv’s :

X =
⊔

v∈V

Xv .

A tree T and, in green, the total space X of a tree of spaces of base T .

Remark 6.2. Some authors consider another definition for the total space X of a tree of spaces
(see, for instance, [Tu01]) which keeps track of the adjacency in the base tree, namely, given an
orientation of the edges :

X =

(
⊔

v∈V

Xv ⊔
⊔

e∈E

(Xe × [0, 1])

)
/ ∼,

where the identification ∼ is given by, for e = (v,w) ∈ E, Xe × {0} ∼ σe,v(Xe) and Xe × {1} ∼
σe,w(Xe). This corresponds to the cylinders in the previous figure.
In the present paper, we do not consider this additionnal data in the total space for a matter of
simplicity.

Definition 6.3. Let v ∈ V and x, y ∈ X with x ∈ Xw and y ∈ Xu. We say that Xv is between
x and y if the vertex v is between w and u in T i.e. v belongs to the vertex path joining w to u.

Remark 6.4. In the case where the Xv’s are metric spaces, the total space X can be naturally
endowed with a metric which extends the metric of each Xv and the tree metric (see [DG03]).
This metric on X can also be obtained by the labelled partitions metric from the constructions
we define in Definition 6.16 and Definition 6.18 when each Xv is endowed with a structure of
space with labelled partitions (in the case where edge sets are single points).
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An automorphism of a tree is a bijection f of the vertex set such that f(v) and f(w) are
connected by an edge if and only if v and w are connected by an edge. From this notion, we
describe what is an automorphism of a tree of spaces :

Definition 6.5 (Automorphisms of tree of spaces). Let X =
(
T, (Xv)v∈V , (Xe)e∈E

)
be a tree

of spaces and X be its total space. We denote by ρ : X → V the natural projection given by
x ∈ Xv 7→ v.

We say that a bijection ϕ : X → X is an automorphism of X if :

1. There exists ϕ̃ : V → V such that ϕ̃ is an automorphism of T and :

ϕ̃ ◦ ρ = ρ ◦ ϕ.

2. The restriction ϕ|σe,v(Xe)
induces a bijection from σe,v(Xe) to σϕ̃(e),ϕ̃(v)(Xϕ̃(e)).

Remark 6.6. Let ϕ be an automorphism of X .

1. The restriction ϕ|Xv
is a bijection from Xv to Xϕ̃(v).

2. The map ϕ̂e,v := σ−1
ϕ̃(e),ϕ̃(v) ◦ ϕ ◦ σe,v is a bijection from Xe to Xϕ̃(e).

3. The map ϕ−1 is an automorphism of X and we have ϕ̃−1 = ϕ̃−1.

Subsequently, we consider a tree of spaces where the edge sets are reduced to single points :
Let

(
T, (Xv)v∈V , ({•e})e∈E

)
be a tree of spaces and X be its total space.

The total space of a tree of spaces whose edge sets are singletons.

Definition 6.7 (Projection on vertex sets). Let v ∈ V . The map πv : X → Xv defined by, for
x ∈ Xw with w ∈ V :

πv(x) =

{
x if w = v,
σe,v(•e) if w 6= v,

where e is the first edge in the edge path in T from v to w.
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The projection πv on Xv.

Lemma 6.8. Let x, y ∈ X and v ∈ V . If πv(x) 6= πv(y) then Xv is between x and y. In
particular, the set {v ∈ V | πv(x) 6= πv(y)} is finite.

Proof. Let x ∈ Xw and y ∈ Xu with w, u ∈ V . If v is not between w and u in T , then v 6= w,
v 6= u and moreover the edge path joining v to w and the edge path joining v to u in T coincide
at least on the first edge e. Hence, by definition :

πv(x) = σe,v(•e) = πv(y).

Lemma 6.9. Let ϕ be an automorphism of a tree of spaces X =
(
T, (Xv)v∈V , ({•e})e∈E

)
. Then

for v ∈ V , we have :

ϕ ◦ πv = πϕ̃(v) ◦ ϕ.

Proof. Let us show that, for all x in the total space X of X , ϕ(πv(x)) = πϕ̃(v)(ϕ(x)). If x ∈ Xv,
the identity is clear since ϕ(x) belongs to Xϕ̃(v). Now, assume that x ∈ Xw with w 6= v and
denote by e the first edge in the edge path joining v to w in T . As ϕ̃ is an automorphism of T ,
ϕ̃(e) is the first edge in the edge path joining ϕ̃(v) to ϕ̃(w). Hence, since ϕ(x) ∈ Xϕ̃(w), we have,
by Remark 6.6, 2. :

πϕ̃(v)(ϕ(x)) = σϕ̃(e),ϕ̃(v)(•ϕ̃(e)) = ϕ(σe,v(•e)) = ϕ(πv(x)).

Lemma 6.10. Let ϕ be an automorphism of a tree of spaces
(
T, (Xv)v∈V , ({•e})e∈E

)
. For

x, y ∈ X, we have :

{v ∈ V | πv(ϕ(x)) 6= πv(ϕ(y))} = ϕ̃ ({v ∈ V | πv(x) 6= πv(y)}) .

Proof. Let x, y ∈ X. By Lemma 6.9, we have, for v ∈ V :

πv(ϕ(x)) 6= πv(ϕ(y)) ⇔ ϕ(πϕ̃−1(v)(x)) 6= ϕ(πϕ̃−1(v)(y))

⇔ πϕ̃−1(v)(x) 6= πϕ̃−1(v)(y), since ϕ is a bijection.
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Thus,

{v ∈ V | πv(ϕ(x)) 6= πv(ϕ(y))} = {v ∈ V | πϕ̃−1(v)(x) 6= πϕ̃−1(v)(y)}

= {ϕ̃(v) ∈ V | πv(ϕ(x)) 6= πv(ϕ(y))}.

Example 6.11. We consider an amalgamated free product Γ = G∗CH, together with the natural
action on its Bass-Serre tree T = (V,E) where :

V = Γ/G ⊔ Γ/H and E = Γ/C,

and the endpoints maps are given by the inclusions of C left-cosets into G and H left-cosets.

For our purpose, we construct the following tree of space of base T :

- For v = γG ∈ V , we consider Xv = γG/C = {γgC | g ∈ G} and for v = γH, we set
Xv = γH/C.

- For e = γC ∈ E, we consider the singleton Xe = {γC}. The structural maps σγC,γG and
σγC,γH are the trivial maps γC 7→ γC ∈ γG/C and γC 7→ γC ∈ γH/C.

These datas give rise to a tree of spaces X = (T, {Xv}, {Xe}) on which Γ acts by automor-
phisms of tree of spaces.
In fact, every γ ∈ Γ defines a bijection of the total space X by :

γ′gC ∈ Xγ′G 7→ γγ′gC ∈ Xγγ′G

and,
γ′hC ∈ Xγ′H 7→ γγ′hC ∈ Xγγ′H .

Moreover, the map γ̃ : V → V is exactly the map v 7→ γv given by the action of Γ on T and we
have :

σγγ′C,γγ′G(•γγ′C) = γγ′C = γσγ′C,γ′G(•γ′C).

Thus σ−1
γγ′C,γγ′G ◦ γ ◦ σγ′C,γ′G is a bijection and similarly, σ−1

γγ′C,γγ′H ◦ γ ◦ σγ′C,γ′H is a bijection,
for all γ′ ∈ Γ.

Definition 6.12. Let Γ = G ∗C H be an amalgamated and T be its Bass-Serre tree. We call
tree of C-cosets spaces associated with Γ, the tree of spaces (T, {Xv}, {Xe}) defined in Example
6.11.

The tree of C-cosets spaces associated with G ∗C H.
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1. Labelled partitions induced by the vertex sets

Definition 6.13. Let
(
T, (Xv)v∈V , ({•e})e∈E

)
be a tree of spaces and X be its total space.

Assume that each vertex set Xv is endowed with a structure of space with labelled partitions
(Xv,Pv , Fv(Pv)).

Let v ∈ V . We set, for pv ∈ Pv, the following labelling function on X :

p⊕v
v = pv ◦ πv,

and we denote P⊕v
v = {p⊕v

v | pv ∈ Pv}.
The set :

PX =
⋃

v∈V

P⊕v
v

is called the family of labelling functions induced by the vertex sets.

Partition of X induced by a partition of Xv via the projection πv.

Definition 6.14. Let
(
T, (Xv)v∈V , ({•e})e∈E

)
be a tree of spaces and X be its total space.

Assume that each vertex set Xv is endowed with a structure of space with labelled partitions
(Xv,Pv , Fv(Pv)).
Let v ∈ V . For ξ ∈ Fv(Pv), we denote ξ⊕v : PX → K the function :

ξ⊕v(p) =

{
ξ(pv) if p = p⊕v

v ∈ P⊕v
v

0 otherwise.

Let q ≥ 1. We set :

Eq(PX) :=

{
∑

v∈V

ξ⊕v
v | ξv ∈ Fv(Pv) with ξv = 0 for all but finitely many vertices v

}
,

endowed with the norm ‖.‖q defined by, for ξ =
∑

v ξ
⊕v
v :

‖ξ‖q :=

(
∑

v

‖ξv‖
q
Fv(Pv)

) 1
q

.
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The Banach space Fq(PX) := Eq(PX)
‖.‖q

is called the q-space of functions on PX of X.

Proposition 6.15 (Labelled partitions structure on X induced by the vertex sets).
Let

(
T, (Xv)v∈V , ({•e})e∈E

)
be a tree of spaces and X be its total space. Assume that each vertex

set Xv is endowed with a structure of space with labelled partitions (Xv,Pv , Fv(Pv)). Consider
X together with its family PX of labelling functions induced by the vertex sets.

Let q ≥ 1 and Fq(PX) be the q-space of functions on PX of X. Then, the triple (X,PX , Fq(PX))
is a space with labelled partitions. Moreover, we have, for x, y ∈ X :

‖c(x, y)‖q
Fq (PX )

=
∑

v∈V

‖cv(πv(x), πv(y))‖
q
Fv(Pv)

Proof. We denote by cv the separation map of Xv associated with Pv and by cX the separation
map associated with PX .

Let x, y ∈ X and v ∈ V . For p⊕v
v ∈ P⊕v

v , we have :

cX(x, y)(p⊕v
v ) = pv(πv(x))− pv(πv(y)) = cv(πv(x), πv(y))(pv).

It follows that cX(x, y) =
∑

v cv(πv(x), πv(y))
⊕v which is a finite sum since πv(x) = πv(y)

for all but finitely many v’s by Lemma 6.8. Thus, cX(x, y) belongs to Fq(PX) and hence,
(X,PX , Fq(PX)) is a space with labelled partitions.

Definition 6.16. Let
(
T, (Xv)v∈V , ({•e})e∈E

)
be a tree of spaces and X be its total space.

Assume that each vertex set Xv is endowed with a structure of space with labelled partitions
(Xv,Pv , Fv(Pv)). Consider X together with its family PX of labelling functions induced by the
vertex sets and let Fq(PX) be the q-space of functions on PX of X.

The triple (X,PX , Fq(PX)) is called the space with labelled partitions on X induced by the
vertex sets.

Proposition 6.17. Let X =
(
T, (Xv)v∈V , ({•e})e∈E

)
be a tree of spaces and X be its total space.

Assume that each vertex set Xv is endowed with a structure of space with labelled partitions
(Xv,Pv , Fv(Pv)) and let (X,PX , Fq(PX)) be the space with labelled partitions on X induced by
the vertex sets.

Let ϕ be an automorphism of X . If, for all v ∈ V , the map ϕ|Xv
: Xv → Xϕ̃(v) is a homomorphism

of spaces with labelled partitions, then φ is an automorphism of space with labelled partitions of
(X,PX , Fq(PX)).

Proof. Let p = p⊕v
v ∈ PX with v ∈ V and pv ∈ Pv. Then we have, by Lemma 6.9 :

φϕ(p) = pv ◦ πv ◦ ϕ = pv ◦ ϕ|X
ϕ̃−1(v)

◦ πϕ̃−1(v) = (pv ◦ ϕ|X
ϕ̃−1(v)

)⊕ϕ̃−1(v) ∈ PX ,

since ϕ|X
ϕ̃−1(v)

: Xϕ̃−1(v) → Xv is a homomorphism of space with labelled partitions.

Now, let ξ =
∑

v∈V ξ⊕v
v ∈ Eq(PX) where ξv ∈ Fv(Pv) for all v ∈ V . We have, for p = p⊕v

v ∈ PX :

ξ ◦ φϕ(p) = ξ((pv ◦ ϕ|X
ϕ̃−1(v)

)
⊕

ϕ̃−1(v)),

= ξϕ̃−1(v)(pv ◦ ϕ|X
ϕ̃−1(v)

),

ξ ◦ φϕ(p) = (ξϕ̃−1(v) ◦ φϕ|X
ϕ̃−1(v)

)⊕v (p).
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Thus,

ξ ◦ φϕ =
∑

v∈V

(ξϕ̃−1(v) ◦ φϕ|X
ϕ̃−1(v)

)⊕v .

Hence, by making the substitution v = ϕ̃−1(v), we obtain :

ξ ◦ φϕ =
∑

v∈V

(ξv ◦ φϕ|Xv
)⊕ϕ̃(v) ∈ Eq(PX),

since ξv ◦ φϕ|Xv
belongs to Fϕ̃(v)(Pϕ̃(v)) and ξv = 0 for all but finitely many v’s.

By completeness of Fq(PX), we have, for all ξ ∈ Fq(PX), ξ ◦ φϕ ∈ Fq(PX).

Moreover, since, for all v ∈ V , ‖ξv ◦ φϕ|Xv
‖
Fϕ̃(v)(Pϕ̃(v))

= ‖ξv‖Fv(Pv)
, it follows that :

‖ξ ◦ φϕ‖
q
q

=
∑

v∈V ‖ξv ◦ φϕ|Xv
‖q
Fϕ̃(v)(Pϕ̃(v))

,

=
∑

v∈V ‖ξv‖
q
Fv(Pv)

,

‖ξ ◦ φϕ‖
q
q

= ‖ξ‖q
q
.

Then, ϕ is an automorphism of (X,PX , Fq(PX)).

2. Labelled partitions induced by the tree structure

We detail here the space with labelled partitions induced by the natural wall structure on
the set of vertices of a tree T , and we consider the pullback of this structure on a tree of spaces
of base T via the projection ρ : X → V namely, for x ∈ Xv ⊂ X, ρ(x) = v. Here we denote by
[v,w]E the set of edges in the edge path between two vertices v and w.

Let q ≥ 1 and let T = (V,E) be a tree. Let e be an edge with endpoints v and w in
V . “Removing” this edge from T gives rise to two complementary connected components of
vertices, namely he,v = {u ∈ V | dT (v, u) < dT (w, u)} and he,w = {u ∈ V | dT (w, u) < dT (v, u)}.

Wall structure on a tree induced by the edge set.
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We then consider the following family of labelling functions on V :

P = {2−
1
q
1he,v | e ∈ E and v is a endpoint of e},

where 1he,v is the characteristic function of the set he,v.

Notice that, for v,w ∈ V :

|1he,u(v)− 1he,u(w)| =

{
1 if e ∈ [v,w]E

0 otherwise.

Hence, we have, for v,w ∈ V :

‖c(v,w)‖qℓq (P) =
∑

p∈P |p(v) − p(w)|q,

= 1
2

∑
e∈E

∑
u∈e |1he,u(v) − 1he,u(w)|

q ,

= 1
2

∑
e∈[v,w]E

2 ,

‖c(v,w)‖qℓq (P) = #[v,w]E = dT (v,w)

Hence, (V,P, ℓq(P)) is a space with labelled partitions.

We can now consider the pullback (see Definition 3.15) of this space with labelled partitions
via the projection ρ : X → V :

Definition 6.18. Let X =
(
T, (Xv)v∈V , (Xe)e∈E

)
be a tree of spaces and X be its total space.

The space with labelled partitions on X defined as the pullback of (V,P, ℓq(P)) via ρ : X → V is
called the structure of labelled partitions of X induced by the tree structure.

Proposition 6.19. Let X =
(
T, (Xv)v∈V , (Xe)e∈E

)
be a tree of spaces, X be its total space and

ϕ : X → X be an automorphism of X .
Then ϕ is an automorphism of the space with labelled partitions of X induced by the tree structure.

Proof. Let ϕ be an automorphism of X . Since ϕ̃ is an automorphism of T , one can easily
show that ϕ̃ is an automorphism of space with labelled partitions of (V,P, ℓq(P)). Hence, as
ϕ ◦ φ = φ ◦ ϕ̃, by Lemma 3.14, φ is an automorphism the space with labelled partitions of X
induced by the tree structure.

6.2 Amalgamated free product and property PL
p

Let Γ = G ∗C H be an amalgamated free product and let us consider the tree of C-cosets
spaces X =

(
T, (Xv)v∈V , ({•e})e∈E

)
on which Γ acts by automorphisms (see Definition 6.12.

Recall that Xv = γG/C if v = γG, Xv = γH/C if v = γH and •γC = γC.

Let us consider systems of representatives rep(G/C) and rep(H/C) of G/C and H/C respec-
tively, each containing the unit of the group as the representative of the class C. Every element
in Γ can be expressed as a reduced word in terms of these systems of representatives (see, for
instance, [SW79]) :
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Definition-Proposition 6.20 (reduced word). Let G,H be groups and C be a common sub-
group. An element γ of G ∗C H can be uniquely written in the following way :

γ = g1h1...gnhnc,

where :
- for i = 1, ..., n, gi ∈ rep(G/C) and hi ∈ rep(H/C) ;
- for i > 1, gi 6= eG and for i < n, hi 6= eH ;
- c ∈ C.

Such an expression of γ is called a reduced word (relatively to rep(G/C) and rep(H/C)).

Let us denote :

RΓ/G = {g1h1...gnhn | g1h1...gnhn is a reduced word withhn 6= eH}, and

RΓ/H = {g1h1...gn | g1h1...gn is a reduced word}. (notice that gn 6= eG by definition). Then
RΓ/G is a system of representatives of Γ/G in Γ and RΓ/H is a system of representatives of Γ/H
in Γ.

The maps we define below will allow us to endow the vertex sets of the tree of C-cosets
spaces of Γ with the pullback structure of space with labelled partitions coming from G/C and
H/C.

Notation 6.21. Let γ ∈ RΓ/G and γ′ ∈ RΓ/H . We set :

- fγG : XγG → G/C such that γgC 7→ gC and,

- fγ′H : Xγ′H → H/C such that γ′hC 7→ hC.

These maps satifies the following equivariance formulas :

Lemma 6.22. Let γ ∈ Γ. We have :
- Let γ1, γ2 ∈ RΓ/G. Assume there exists g ∈ G such that γγ1 = γ2g. Then, for all x ∈ Xγ1G :

fγ2G(γx) = gfγ1G(x).

- Let γ1, γ2 ∈ RΓ/H . Assume there exists h ∈ H such that γγ1 = γ2h. Then, for all x ∈ Xγ1H :

fγ2H(γx) = hfγ1H(x).

Proof. Let γ ∈ Γ and γ1, γ2 ∈ RΓ/G such that there exists g ∈ G such that γγ1 = γ2g. For
x ∈ Xγ1G, there exists gx ∈ G such that x = γ1gxC. Then we have :

fγ2G(γx) = fγ2G(γ2ggxC) = ggxC = gfγ1G(x).

A similar argument holds for the second statement.

Theorem 6.23. Let G,H be groups and C be a common subgroup. Assume that G acts by
automorphisms on (G/C,P, F (P)) and H acts by automorphisms on (H/C,P ′, F ′(P ′)).
Let X be the tree of C-cosets spaces associated with Γ = G ∗C H and X be the total space
of X . Then Γ acts by automorphisms on (X,PX , FX(PX)) such that Fq(PX) is isometrically
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isomorphic to a closed subspace of
⊕

qF (P) ⊕
⊕

qF ′(P ′)⊕ ℓq.
Moreover, considering C ∈ XG ⊂ X, we have, for γ = g1h1...gnhnc ∈ G ∗C H :

‖cX(γC,C)‖q =
n∑

k=1

(‖cG(gkC,C)‖q
F (P)

+ ‖cH(hkC,C)‖q
F ′(P′)

) + dT (γG,G)q .

In particular, if G y (G/C,P, F (P)) and H y (H/C,P ′, F ′(P ′)) are proper, then Γ y

(X,PX , FX(PX)) is proper.

Proof. X =
(
T, (Xv)v∈V , ({•e})e∈E

)
tree of C-cosets spaces associated with Γ = G ∗C H and

let RΓ/G and RΓ/H be the systems of representative of Γ/G and Γ/H respectively defined in
Definition-Proposition 6.20.
Notice that V = {γG | γ ∈ RΓ/G} ⊔ {γH | γ ∈ RΓ/H}.

For γG, γ′H ∈ V with γ ∈ RΓ/G and γ′ ∈ RΓ/H , we endow the vertex sets XγG and XγH with
pullback structures of spaces with labelled partitions (XγG,PγG, FγG(PγG) and (XγH ,PγH , FγH(PγH)
given, respectively, by the maps introduced in Notation 6.21 :
- fγG : XγG → G/C such that γgC 7→ gC and,
- fγ′H : Xγ′H → H/C such that γ′HC 7→ hC.

Now, from these structures, we consider the space with labelled partitions (X,PV , Fq(PV ))
induced by the vertex sets given by Definition 6.16 and we denote by cV the associated separa-
tion map.
We must prove that Γ acts by automorphisms of space with labelled partitions on (X,PV , Fq(PV )).
We showed in Example 6.11 that Γ acts by automorphisms of tree of spaces on X . Hence, by
Lemma 6.5, it sufficies to show that, for all γ ∈ Γ, the map γ|Xv

: Xv → Xγv is a homomorphisms
of space with labelled partitions, for every v ∈ V :

Let γ ∈ Γ. Let v = γ1G ∈ V with γ1 ∈ RΓ/G and let γ2 ∈ RΓ/G such that γγ1 = γ2g for some
g ∈ G i.e. γ2 is the representative in RΓ/G of the coset γγ1G. Notice that γv = γ2G.
A labelling function of Pγv is of the form p ◦ fγ2G for some p ∈ P, and we have, by Lemma 6.22,
for all x ∈ Xv,p(fγ2G(γx)) = p(gfγ1G(x)).

Let us set the following maps :

- φfγ1G
: P → Pv such that p 7→ p ◦ fγ1G ;

- φfγ2G
: P → Pγv such that p 7→ p ◦ fγ2G ;

- φg : P → P such that p 7→ {x ∈ G/C 7→ p(gx)} and

- φγ : Pγv → {K-valued functions on Xv} such that pγv 7→ pγv ◦ γ|Xv
;

Thus, by the previous equality, we have :

φγ(p ◦ fγ2G) = φg(p) ◦ fγ1G ∈ PXv , (∗)

since φg(p) belongs to P.

Now, let ξ ∈ Fv(Pv). By using the definitions of pullback structures, we have :
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‖ξ ◦ φγ‖Fγv(Pγv)
= ‖ξ ◦ φγ ◦ φfγ2G

‖
F (P)

,

= ‖ξ ◦ φfγ1G
◦ φg‖F (P)

, by (∗),

= ‖ξ ◦ φfγ1G
‖
F (P)

, by (∗),

‖ξ ◦ φγ‖Fγv(Pγv)
= ‖ξ‖

Fv(Pv)
,

Hence, γ|Xv
: Xv → Xγv is a homomorphism of space with labelled partitions and similar argu-

ment holds for vertices v of the form v = γ1H with γ1 ∈ RΓ/H . As said before, it follows that Γ
acts by automorphisms on (X,PV , Fq(PV )).

Let γ = g1h1...gnhnc ∈ G ∗C H be a reduced word and consider the element C ∈ XG. By
Proposition 6.15, we have :

‖cV (γC,C)‖q
Fq (PV )

=
∑

v∈V

‖cv(πv(γC), πv(C))‖q
Fv(Pv)

.

By Lemma 6.8, this sum is a finite sum over a subset of {v ∈ V | v is between G and γG}. But
the vertices between G and γG are the following :

G, g1H, · · · , g1h1...hk−1G, g1h1...hk−1gkH, g1h1...gkhkG, · · · , g1h1...gnH, γG,

and notice that :

g1h1...hk−1gkC is the edge between g1h1...hk−1G and g1h1...hk−1gkH,

and
g1h1...gkhkC is the edge between g1h1...hk−1gkH and g1h1...gkhkG.

It follows that, for v = g1h1...hk−1gkH,

πv(C) = g1h1...hk−1gkC and πv(γC) = g1h1...gkhkC.

Then, by denoting γk = g1h1...hk−1gk, we have :

‖cv(πv(γC), πv(C))‖
Fv(Pv)

= ‖cv(γkhkC, γkC)‖
Fv(Pv)

= ‖cH(fγkH(γkhkC), fγkH(γkC))‖
F ′(P′)

(notice that γk ∈ RΓ/H)

= ‖cH(hkC,C)‖
F ′(P′)

Now, for v = g1h1...gk−1hk−1G,

πv(C) = g1h1...gk−1hk−1C and πv(γC) = g1h1...hk−1gkC.

Hence, similarly, we have ‖cv(πv(γC), πv(C))‖
Fv(Pv)

= ‖cG(gkC,C)‖
F (P)

.

Thus :

‖cV (γC,C)‖q
Fq(PV )

=
n∑

k=1

‖cG(gkC,C)‖q
F (P)

+ ‖cH(hkC,C)‖q
F ′(P′)

.
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Let us now consider the structure of space with labelled partitions (X,PT , ℓ
q(PT )) induces

by the tree structure given by Definition 6.18. By Proposition 6.19, Γ acts by automorphisms
on (X,PT , ℓ

q(PT )) and we have, for γ = g1h1...gnhnc a reduced word,

‖cT (γC,C)‖q
ℓq(PT )

= dT (γG,G) = k,

where 2n − 2 ≤ k ≤ 2n (depending on the fact that g1 and h1 can possibly be trivial).

Finally, we endow X with a structure of labelled partitions (X,PX , FX (PX)) given by the
pullback of the product structure (X×X,P⊕

V ⊔P⊕
T , Fq(PV )⊕ ℓq(PT )) via the Γ-equivariant map

x 7→ (x, x). Hence, we have, for γ = g1h1...gnhnc and C ∈ XG :

‖cX(γC,C)‖q =
n∑

k=1

‖cG(gkC,C)‖q
F (P)

+ ‖cH(hkC,C)‖q
F ′(P′)

+ dT (γG,G),

where cX is the separation map associated with PX .

Corollary 6.24. Let G,H be groups, F be a common finite subgroup and q ≥ 1. Assume that
G acts properly by automorphisms on (G,PG, FG(PG)) and H acts properly by automorphisms
on (H,PH , FH(PH)).
Then there exists a space with labelled partitions (X,PX , FX(PX)) on which G∗F H acts properly
by automorphisms, and morevover FX(PX) is isometrically isomorphic to a closed subspace of⊕

qFG(PG)⊕
⊕

qFH(PH)⊕ ℓq.

Before we prove this corollary, we need the following lemma :

Lemma 6.25. Let G be a group and F be a finite subgroup of G. Assume that G is endowed
with a structure of space with labelled partitions (G,P, F (P)) on which it acts by automorphisms
via left-translation.
Then there exists a structure of space with labelled partitions (G/F,P ′, F ′(P ′)) on which G acts
by automorphisms via its natural action on the quotient G/F and where F ′(P ′) is isometrically
isomorphic to a closed subspace of F (P). Moreover, there exists K ≥ 0 such that, for all g, g′ ∈
G :

‖c(g, g′)‖
F ′(P′)

+K ≥ ‖c′(gF, g′F )‖
F ′(P′)

≥ ‖c(g, g′)‖
F ′(P′)

−K,

where c, c′ are the respective separation maps of (G,P, F (P)) and (G/F,P ′, F ′(P ′)).
In particular, G y (G,P, F (P)) is proper if, and only if, G y (G/F,P ′, F ′(P ′)) is proper.

Proof. For p ∈ P, we define the labelling function p′ : G/F → K, by, for g ∈ G :

p′(gF ) :=
1

#F

∑

f∈F

p(gf).

Notice that p′ is well-defined since
∑

f∈F p(g′f) =
∑

f∈F p(gf) for every g′ ∈ gF .
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We consider the family of labelling functions P ′ = {p′ | p ∈ P} and we denote by c′ its associated
separation function. For p ∈ P, g, g′ ∈ G, we have :

c′(gF, g′F )(p′) =
1

#F

∑

f∈F

c(gf, g′f)(p).

Then, if we set E′(P ′) := Vect(c′(gF, g′F ) | g, g′ ∈ G), the linear operator T : E′(P ′) → F (P)
such that :

T : c′(gF, g′F ) 7→
1

#F

∑

f∈F

c(gf, g′f),

is injective. Hence we can consider the Banach space F ′(P ′) defined as the closure of E′(P ′)
endowed with the norm ‖ξ‖

F ′(P′)
:= ‖T (ξ)‖

F (P)
. As c′(gF, g′F ) belongs to F ′(P ′) for all g, g′ ∈ G,

it follows that (G/F,P ′, F ′(P ′)) is a space with labelled partitions, and it is clear that G acts
on it by automorphisms via its natural action on G/F .
Now, let us consider η = 1

#F

∑
f∈F c(f, e) ∈ F (P). Then we have, for g ∈ G :

‖c′(gF, F )‖
F ′(P′)

= ‖ 1
#F

∑
f∈F c(gf, f)‖

F (P)

= ‖c(g, e) + η ◦ φg − η‖
F (P)

.

As ξ 7→ ξ◦φg is an isometry of F (P), we have, by triangular inequality, ‖η◦φg−η‖
F (P)

≤ 2‖η‖
F (P)

.
Hence, again by triangular inequalities :

‖c(g, e)‖
F (P)

+K ≥ ‖c′(gF, F )‖
F′(P′)

≥ ‖c(g, e)‖
F (P)

−K,

where K = 2‖η‖
F (P)

.

Proof of Corollary 6.24. Assume that G acts properly by automorphisms on (G,PG, FG(PG))
and H acts properly by automorphisms on (H,PH , FH(PH)). Then, by Lemma 6.25, there
exists spaces with labelled partitions (G/F,P, F (P)) and (H/F,P ′, F ′(P ′)) on which G and H
respectively act properly via their natural actions on quotients. Thus we can apply Theorem
6.23 : G∗F H acts by automorphisms on a space with labelled partitions (X,PX , Fq(PX)) where
X is the total space of the tree of F -cosets spaces associated with G ∗F H and Fq(PX) .⊕

qF (P) ⊕
⊕

qF ′(P ′)⊕ ℓq. Moreover, we have, for γ = g1h1...gnhnf ∈ G ∗F H :

‖cX(γF, F )‖q =
n∑

k=1

‖cG(gkF,F )‖q
F (P)

+ ‖cH(hkF,F )‖q
F ′(P′)

+ dT (γG,G).

For R ≥ 0, ‖cX(γF, F )‖ ≤ R implies that 2n− 2 ≤ dT (γG,G) ≤ Rq, ‖cG(gkF,F )‖
F (P)

≤ R and
‖cH(hkF,F )‖

F ′(P′)
≤ R.

Hence, for all R ≥ 0, {γ = g1h1...gnhnf | ‖cX(γF, F )‖ ≤ R} is a subset of :

{
γ = g1h1...gnhnf | n ≤ 2(Rq + 2) and ‖cG(gkF,F )‖

F (P)
≤ R, ‖cH(hkF,F )‖

F ′(P′)
≤ R

}
,

which is a finite set as F is finite, n is bounded and G y (G/F,P, F (P)), H y (H/F,P ′, F ′(P ′))
are proper.
Thus, Γ y (X,PX , Fq(PX)) is proper.
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Proof of Theorem 4. The necessary condition is clear as G,H are subgroups of G ∗F H.
Now, assume G,H have property PLp. It follows from Corollary 2 that there exists structures of
spaces with labelled partitions (G,P, F (P ′)) and (H,P ′, F ′(P ′)) on which G and H respectively,
act properly by automorphisms via left-translations. Moreover F (P) is isometrically isomorphic
to a closed subspace of a Lp space and so does F ′(P ′).
Thus, as F is finite, by Corollary 6.24, there exists a space with labelled partitions (X,PX , FX(PX))
on which G ∗F H acts properly by automorphisms where :

FX(PX) .
⊕

pF (P) ⊕
⊕

pF ′(P ′)⊕ ℓp.

Hence, FX(PX) is isometrically isomorphic to a closed subspace of a Lp space by Proposition
2.12. By Corollary 2, it follows that G ∗F H has property PLp.
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