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Résumé

Dans le premier chapitre, nous définissons la notion d’espaces à partitions pondérées

qui généralise la structure d’espaces à murs mesurés et qui fournit un cadre géométrique à

l’étude des actions isométriques affines sur des espaces de Banach pour les groupes locale-

ment compacts à base dénombrable. Dans un premier temps, nous caractérisons les actions

isométriques affines propres sur des espaces de Banach en termes d’actions propres par

automorphismes sur des espaces à partitions pondérées. Puis, nous nous intéressons aux

structures de partitions pondérées naturelles pour les actions de certaines constructions

de groupes : somme directe ; produit semi-directe ; produit en couronne et produit libre.

Nous établissons ainsi des résultats de stabilité de la propriété PLp par ces constructions.

Notamment, nous généralisons un résultat de Cornulier, Stalder et Valette de la façon

suivante : le produit en couronne d’un groupe ayant la propriété PLp par un groupe ayant

la propriété de Haagerup possède la propriété PLp.

Dans le deuxième chapitre, nous nous intéressons aux espaces métriques quasi-médians

- une généralisation des espaces hyperboliques à la Gromov et des espaces médians - et

à leur propriétés. Après l’étude de quelques exemples, nous démontrons qu’un espace δ-

médian est δ′-médian pour tout δ′ ≥ δ. Ce résultat nous permet par la suite d’établir la

stabilité par produit directe et par produit libre d’espaces métriques - notion que nous

développons par la même occasion.

Le troisième chapitre est consacré à la définition et l’étude d’une distance propre, inva-

riante à gauche et qui engendre la topologie explicite sur les groupes localement compacts,

compactement engendrés. Après avoir montré les propriétés précédentes, nous prouvons

que cette distance est quasi-isométrique à la distance des mots sur le groupe et que la

croissance du volume des boules est contrôlée exponentiellement.
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Abstract

In the first chapter, we define the notion of spaces with labelled partitions which ge-

neralizes the structure of spaces with measured walls : it provides a geometric setting

to study isometric affine actions on Banach spaces of second countable locally compact

groups. First, we characterise isometric affine actions on Banach spaces in terms of proper

actions by automorphisms on spaces with labelled partitions. Then, we focus on natural

structures of labelled partitions for actions of some group constructions : direct sum ;

semi-direct product ; wreath product and free product. We establish stability results for

property PLp by these constructions. Especially, we generalize a result of Cornulier, Stal-

der and Valette in the following way : the wreath product of a group having property PLp

by a Haagerup group has property PLp.

In the second chapter, we focus on the notion of quasi-median metric spaces - a genera-

lization of both Gromov hyperbolic spaces and median spaces - and its properties. After

the study of some examples, we show that a δ-median space is δ′-median for all δ′ ≥ δ.

This result gives us a way to establish the stability of the quasi-median property by direct

product and by free product of metric spaces - notion that we develop at the same time.

The third chapter is devoted to the definition and the study of an explicit proper, left-

invariant metric which generates the topology on locally compact, compactly generated

groups. Having showed these properties, we prove that this metric is quasi-isometric to

the word metric and that the volume growth of the balls is exponentially controlled.
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Introduction

This thesis has been achieved under the supervision of Professor Indira Chatterji at

the laboratory of Mathematics MAPMO of Orléans from October 2010 to April 2014.

0.1 Motivations and context

A locally compact second countable group G has Haagerup property (or is a-(T)-

menable) if there exists a proper continuous isometric affine action ofG on a Hilbert space ;

this property can be seen as a strong negation of Kazhdan’s property (T) (an overview

of the Haagerup property can be found in [CCJ+01]). Groups having Haagerup property

are known to satisfy the Baum-Connes conjecture by a result of Higson and Kasparov in

[HK01] (see [Jul98] for further details). Haagerup property is closed by taking subgroups,

direct products, amalgamated products over finite subsets but it is not stable by group

extensions in general, even in the case of semi-direct products. However, Cornulier, Stalder

and Valette recently proved in [CSV12] that it is stable by a particular kind of extension,

namely the wreath product. They use for their proof the connexion between Haagerup

property and spaces with measured walls, that we will now explain.

A space with walls is a pair (X,W ) where X is a set and W is a family of partitions

of X in two pieces called walls such that any pair of points of X is separated by finitely

many walls. This notion was introduced by Haglund and Paulin in [HP98] and generalized

in a topological setting by Cherix, Martin and Valette in [CMV04] to space with measu-

red walls (see Definition 1.3.16). It was gradually realised that the Haagerup property

is equivalent to the existence of a proper action on a space with measured walls ; more

precisely, we have the following theorem : a locally compact second countable group has

the Haagerup property if, and only if, it acts properly by automorphisms on a space with

measured walls. Using results of Robertson and Steger (see [RS98]), Cherix, Martin and

Valette in [CMV04], proved this theorem for discrete groups and Chatterji, Drutu and
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Haglund extended the equivalence to locally compact second countable groups using the

notion of median metric spaces in [CDH10]. In this context, we explore in Chapter 2 a ge-

neralization of the structure of median spaces namely, the δ-median spaces. The stability

of the Haagerup property by wreath product was established in [CSV12] by constructing

a space with measured walls from the structures of measured walls on each factor, and

moreover, in the same article, Cornulier, Stalder and Valette generalized this result to the

permutational wreath product (see Definition 1.5.1) when the index set I is a quotient by

a co-Haagerup subgroup of the shifting group G (see [CI11] for a counter example when

the pair (G, I) has relative property (T)). This result led to the first example of Haagerup

groups which are not weakly amenable in the sense of [CH89].

The notion of Haagerup property naturally extends to proper isometric affine action on Ba-

nach spaces. Recent works have been made about isometric actions on Banach spaces : in

[HP06], Haagerup and Przybyszewska showed that every locally compact second countable

group G acts properly by affine isometries on the reflexive Banach space
⊕2

n∈N L
2n(G,µ)

where µ is the Haar measure ; Cornulier, Tessera, Valette introduced in [CTV08] property

(BP V
0 ) for V a Banach space as a tool to show that the simple Lie group G = Sp(n, 1)

acts properly by isometries on Lp(G) for p > 4n + 2 ; in [BFGM07], Bader, Furman Ge-

lander and Monod, studied an analog of property (T) in terms of Lp spaces and more

generally, of superreflexive Banach spaces. One of the motivation of this topic is given by

a recent result of Kasparov and Yu in [KY12] which asserts that the existence of coarse

embeddings of a finitely generated group in a uniformly convex Banach space implies the

coarse geometric Novikov conjecture for this group. See [Now13] for an overview of results

and questions about isometric affine actions on Banach spaces.

We will focus on specific Banach spaces, namely, Lp spaces. For p ≥ 1, we say that a locally

compact second countable group G has property PLp (or is a-FLp-menable) if there exists

a proper continuous isometric affine action on a Lp space. See for instance [CDH10], for a

caracterisation of property PLp for p ∈ [1, 2] in terms of Haagerup property. An impor-

tant example is the following theorem due to Yu (see [Yu05]) : let Γ be a discrete Gromov

hyperbolic group. Then there exists p ≥ 2 such that Γ has property PLp. Yu proved this

result by giving an explicit proper isometric affine action of Γ on ℓp(Γ× Γ | d(x, y) ≤ R)

using a construction of Mineyev in [Min01] ; see [Bou11] or [Nic12] for other proofs of this

result in terms of boundaries of G. A remarkable consequence is that there exists infinite

groups with property (T) (and hence, without Haagerup property) which have property

PLp for some p > 2.

In Chapter 1, we define a generalization of the structure of spaces with measured
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walls, namely, the structure of spaces with labelled partitions which provides a flexible

framework, in terms of geometry and stability by various type of group constructions, for

isometric affine actions on Banach spaces.

In this geometric context, the metric on the groups considered is a crucial data. For

compactly generated groups, the “canonical” (for a fixed finite generating set) metric is

the word metric but this metric need not generate the topology of the group.

Chapter 3 is devoted to answer the following question :

“Is there an explicit topological analog of the word metric on locally compact, compactly

generated groups ?”.

We already have a good overview about questions of metrizability of topological groups :

Birkhoff in [Bir36] and Kakutani in [Kak36] showed independently that a topological group

is metrizable if and only if it is Hausdorff and there exists a countable fundamental system

of neighbourhoods of the identity element. In this case, the topology can be defined by

a left(or right)-invariant metric (see for instance, [Die69]). But the metric built to prove

this fact need not be a proper metric. As stated in [LMR00] in the case of compactly

generated, second countable groups and in [HP06] in the case of locally compact, second

countable groups, given a left-invariant metric which generates the topology, one can define

a new metric which is plig (proper, left-invariant, generates the topology) ; futhermore,

the previous result was already established in [Str74] ; in this paper, Struble showed the

following theorem : a locally compact group G admits a plig metric if, and only if G is

second countable.

0.2 Organisation of the text and statement of results

In Chapter 1, we define the notion of spaces with labelled partitions which generalizes

the structure of space with measured walls in the general setting of continuous isometric

affine actions on Banach spaces, and more particularly in the Lp case (see Section 1.3).

We establish in Paragraph 1.3.3 the following result which links isometric affine actions

on Banach spaces and actions by automorphisms on spaces with labelled partitions :

Theorem 1. Let G be topological group.

1. If G acts (resp. acts properly) continuously by affine isometries on a Banach space B

then there exists a structure (G,P , F (P)) of space with labelled partitions on G such
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that G acts (resp. acts properly) continuously by automorphisms on (G,P , F (P)) via

its left-action on itself. Moreover, there exists a linear isometric embedding F (P) ↪→
B.

2. If G acts (resp. acts properly) continuously by automorphisms on a space with label-

led partitions (X,P , F (P)) then there exists a (resp. proper) continuous isometric

affine action of G on a Banach space B. Moreover, B is a closed subspace of F (P).

This theorem can be rephrased in the particular case of Lp spaces as follows :

Corollary 2. Let p ≥ 1 with p /∈ 2Z ∖ {2} and G be a topological group. G has property

PLp if, and only if, G acts properly continuously by automorphisms on a space with labelled

partitions (X,P, F (P)) where F (P) is isometrically isomorph to a closed subspace of an

Lp space.

In Section 1.4, we give a natural construction of a space with labelled partitions on

direct sums and we exhibit an explicit proper action by automorphisms on this space

given proper actions by automorphisms on each factor of the direct sum.

In Paragraph 1.4.3, given groups G1, G2 acting properly by automorphisms on spaces

with labelled partitions, we observe that if a morphism ρ : G2 → Aut(G1) “preserves” the

structure of labelled partitions of G1, then the semi-direct product G1⋊ρG2 acts properly

by automorphisms on the natural space with labelled partitions of the direct product ;

more precisely, we prove :

Theorem 3. Let (X1,P1, F1(P1)),(X2,P2, F2(P2)) be spaces with labelled partitions and

G1, G2 be topological groups acting continuously by automorphisms on, respectively,

(X1,P1, F1(P1)) and (X2,P2, F2(P2)) via τ1 and τ2.

Let ρ : G2 → Aut(G1) be a morphism of groups such that (g1, g2) 7→ ρ(g2)g1 is continuous

for the product topology on G1 ×G2.

Assume that there exists a continuous action by automorphisms of G1⋊ρG2 on X1 which

extends the G1 action.

Then the semi-direct product G1⋊ρG2 acts continuously by automorphisms on the natural

structure of labelled partitions (X1 ×X2,P , Fq(P)) on the direct product of X1 ×X2.

Moreover, if, for i = 1, 2, Gi acts properly on (Xi,Pi, Fi(Pi)), then G1⋊ρG2 acts properly

on (X1 ×X2,P , F (P)).

We apply these results in Section 1.5 to prove that the wreath product of a group with

property PLp by a group with the Haagerup property has property PLp :
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Theorem 4. Let H,G be countable discrete groups, L be a subgroup of G and p > 1,

with p /∈ 2Z∖ {2}. We denote by I the quotient G/L and W =
⊕

I H. Assume that G is

Haagerup, L is co-Haagerup in G and H has property PLp.

Then the permutational wreath product H ≀I G = W ⋊G has property PLp.

The proof of this theorem combines the technics mentionned previously to build struc-

tures of spaces with labelled partitions on the direct sum and on the semi-direct product,

and a construction of space with measured walls provided in [CSV12].

In Section 1.6, we define the notion of free product of spaces with labelled partitions

and we build a natural structure of labelled partitions on the free product such that

given group actions by automorphisms on each factor, the free product of groups acts by

automorphisms on the natural space with labelled partitions on the free product. More

precisely, we prove :

Theorem 5.

Let (X,PX , FX(PX)) and (Y,PY , FY (PY )) be non-empty countable spaces with labelled

partitions and x0 ∈ X, y0 ∈ Y be basepoints. Let G and H be discrete countable groups

acting (resp. acting properly) by automorphisms on (X,PX , FX(PX)) and (Y,PY , FY (PY ))

respectively such that no element of G fixes x0 and no element of H fixes y0.

Let q ≥ 1. Then there exists a structure of space with labelled partitions (M,PM , F (PM))

on which G ∗H acts (resp. acts properly) by automorphisms.

More precisely, (M,PM , F (PM)) is the natural space with labelled partitions on the direct

product M = (X ∗ Y )× (G ∗H) where :

— on X∗Y , we consider the natural space with labelled partitions (X∗Y,PX∗Y , Fq(PX∗Y ))

on the free product of (X,PX , FX(PX)) and (Y,PY , FY (PY )) ;

— on G∗H, we consider the natural space with labelled partitions (G∗H,∆G∗H , Fq(∆G∗H))

on the free product of the q-naive spaces with labelled partitions (G,∆G, ℓ
q(∆G)),

(H,∆H , ℓ
q(∆H)) on, respectively, G and H.

In terms of property PLp, the previous theorem implies the following stability result :

Corollary 6. Let p ≥ 1 with p /∈ 2Z∖ {2} and G,H be discrete countable groups. G and

H have property PLp if, and only if, G ∗H has property PLp.

In Chapter 2, we investigate a generalization of median spaces, namely, the quasi-

median spaces. After the definition and some basic properties of quasi-median spaces,
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we prove, in Section 2.5 the following result by generalizing technics used in [Rol98] and

[CDH10] for median spaces :

Theorem 7. Let (X, d) be a δ-median space. Then (X, d) is δ′-median for all δ′ ≥ δ.

This Theorem allows us to explore stability of the quasi-median property by construc-

tions. In Section 2.6, we first state in Proposition 2.6.1 the stability by direct product and

in a second part, we explore deeper the notion of free product of metric spaces initiated

in Section 1.6, and we show the following :

Theorem 8. A free product of quasi-median spaces is quasi-median for the free product

metric.

In Chapter 3, we define, on compactly generated topological groups, an explicit proper,

left-invariant metric ρV which generates the topology. We give an extended study of ρV

in order to show that this metric is plig and we prove that this metric is quasi-isometric

to the word metric. We state the following result :

Theorem 9. Let G be a locally compact, compactly generated group and V be a compact,

symmetric, mobile and generating neighbourhood of the identity. Then ρV is a plig metric

on G for which the balls have exponentially controlled growth.

Moreover, if V ′ be a compact, symmetric, mobile and generating neighbourhood of the

identity, then (G, ρV ) and (G, ρV ′) are quasi-isometric.

Finally, in Section 3.5, we prove the following result :

Theorem 10. Let V be a csg mobile neighbourhood of e. For every x ∈ G, there exists

an optimal V -path from e to x.
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Chapter 1

Spaces with labelled partitions

1.1 Introduction

In this chapter, we define and explore the structure of spaces with labelled partitions.

This notion is meant to provide an analog of spaces with measured walls for isometric

affine actions on Banach spaces. A crucial factor in the definition of space with labelled

partition is the “geometric” understanding of the construction of Mineyev in [Min01] used

by Yu in [Yu05] to exhibit a proper action of discrete hyperbolic groups on some ℓp space.

Moreover, another inspiration for this definition comes from [CCJ+01] Proposition 7.4.1

where Valette states the following geometric characterisation of the Haagerup property

for locally compact groups : G has the Haagerup property if, and only if, there exists

a metric space (X, d) on which G acts isometrically and metrically properly, a unitary

representation π of G on a Hilbert space Hπ, and a continous map c : X ×X → Hπ such

that :

1. Chasles’ relation :

for all x, y, z ∈ X, c(x, z) = c(x, y) + c(y, z) ;

2. G-equivariance condition :

for all x, y ∈ X, g ∈ G, c(gx, gy) = π(g)c(x, y) ;

3. Properness condition :

if d(x, y) → +∞, then ∥c(x, y)∥Hπ → +∞.

To emphasize the connection with this result, we use the same notation c (for cocycle) for

the separation map c : X ×X → F (P) associated with a set of labelling functions P (see

Definition 1.3.3). In fact, an immediate consequence of Theorem 1 Statement 1. is that

the separation map cα of the set of labelled partitions associated with a proper isometric
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affine action α on a Banach space (see Definition 1.3.31), satisfies the conditions 1., 2.,

and 3. mentionned above.

We describe, in Part 2., the maps that preserve the structure of spaces with labelled

partitions in order to define actions by automorphisms on a space with labelled partitions.

This notion of homomorphisms of spaces with labelled partitions generalizes the notion

of homomorphisms of spaces with measured walls (see [CDH10] Definition 3.5).

We discuss some constructions of spaces with labelled partitions for the direct sum, semi-

direct product, wreath product and free product in Sections 1.4, 1.5 and 1.6 and we apply

these constructions in the case of groups with property PLp.

Subsequently, all topological groups we consider are assumed to be Hausdorff.

1.2 Preliminaries

1.2.1 Metrically proper actions

A pseudo-metric d on a set X is a symmetric map d : X × X → R+ which satisfies

the triangle inequality and d(x, x) = 0. But unlike a metric, a pseudo-metric need not

separate points.

Definition 1.2.1. Let G be a topological group acting continuously isometrically on a

pseudo-metric space (X, dX). The G-action on X is said metrically proper if, for all (or

equivalently, for some) x0 ∈ X,

lim
g→∞

dX(g.x0, x0) = +∞.

LetX be a set endowed with a pseudo-metric d. We put onX the following equivalence

relation : for x, x′ ∈ X, x ∼ x′ if, and only if, d(x, x′) = 0, and we denote by Y the quotient

set X/ ∼. Then we can define a metric d̃ on Y by setting, for x, x′ ∈ X, d̃([x], [x′]) =

d(x, x′). Moreover, an isometric group action (X, d) preserves the classes of ∼ and then

induces an isometric action on (Y, d̃).

Lemma 1.2.2. Let G be a topological group acting continuously isometrically on a pseudo-

metric space (X, d). The G-action on X is metrically proper if, and only if, the induced

G-action on the quotient metric space (Y, d̃) is metrically proper.
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1.2.2 Isometric affine actions

Definition 1.2.3. We say that the action of a topological group G on a topological space

X is strongly continuous if, for all x ∈ X, the orbit map from G to X, g 7→ gx is

continuous.

Let G be a topological group and let (B, ∥.∥) be a Banach space on K = R or C.

Definition 1.2.4. A continuous isometric affine action α of G on B is a strongly conti-

nuous morphism

α : G −→ Isom(B) ∩ Aff(B).

Notice that if B is a real Banach space, then, by Mazur-Ulam Theorem,

Isom(B) ∩ Aff(B) = Isom(B).

Proposition 1.2.5. A continuous isometric affine action α of G on B is characterised

by a pair (π, b) where :

— π is a strongly continuous isometric representation of G on B,

— b : G→ B is a continuous map satisfying the 1-cocycle relation : for g, h ∈ G,

b(gh) = π(g)b(h) + b(g).

And we have, for g ∈ G, x ∈ B :

α(g)x = π(g)x+ b(g).

Definition 1.2.6. Let α be a continuous isometric affine action of G on B. We say that

α is proper if the action of G on the metric space (B, d∥.∥) is metrically proper where d∥.∥

is the canonical metric on B induced by the norm ∥.∥.

Proposition 1.2.7. A continuous isometric affine action α of G on B is proper if, and

only if

∥b(g)∥ −→
g→∞

+∞.

Definition 1.2.8. Let p ≥ 1. We say that G has property PLp (or is a-FLp-menable) if

there exists a proper continuous isometric affine action of G on a Lp space.
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1.2.3 On isometries of Lp-spaces

In general, for p ≥ 1, a closed subspace of a Lp-space is not a Lp-space (exempt the

special case p = 2) ; but, in [HJ81], Hardin showed the following result about extension of

linear isometries on closed subspace of a Lp (here, we give a reformulation of this result

coming from [BFGM07], Corollary 2.20) :

Theorem 1.2.9. Let p > 1 with p /∈ 2Z∖{2} and F be a closed subspace of Lp(X,µ). Let

π be a linear isometric representation of a group G on F . Then there is a linear isometric

representation α′ of G on some other space Lp(X ′, µ′) and a linear G-equivariant isometric

embedding F ↪→ Lp(X ′, µ′).

An immediate consequence is the following :

Corollary 1.2.10. Let p > 1 with p /∈ 2Z ∖ {2}, F be a closed subspace of a Lp-space

and G be a topological group. If G acts properly by affine isometries on F , then G has

property PLp.

In Section 1.4, we embed linearly isometrically into Lp spaces some normed vector

spaces isometrically isomorph to a direct sums of Lp spaces thanks to the following basic

result :

Definition 1.2.11. Let I be a countable index set, (Bi, ∥.∥Bi
)i∈I be a family of Banach

spaces and p ≥ 1. We call ℓp-direct sum of the family (Bi) the space :

B =
⊕
i∈I

pBi :=

{
(xi)i∈I ∈

∏
i∈I

Bi |
∑
i∈I

∥xi∥pBi
< +∞

}
,

and we denote, for x = (xi) ∈ B,

∥x∥p :=

(∑
i∈I

∥xi∥pBi

) 1
p

.

The space B =
⊕

i∈I
pBi endowed with the norm ∥.∥p is a Banach space, and moreover,

we have :

Proposition 1.2.12. Let I be a countable index set, p ≥ 1 and (Lp(Xi, µi))i∈I be a family

of Lp-spaces. Then

(⊕
i∈I

pLp(Xi, µi), ∥.∥p

)
is isometrically isomorph to a Lp-space.
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1.3 Spaces with labelled partitions and actions on

Banach Spaces

In this section we will introduce the structure of space with labelled partitions and

record for further use a few basic properties.

1.3.1 Spaces with labelled partitions

1. Definitions

Let K = R or C.

Consider a set X and a function p : X → K. There is a natural partition P = P (p) of X

associated with p :

We have the following equivalence relation ∼p on X : for x, y ∈ X,

x ∼p y if, and only if, p(x) = p(y).

We define the partition associated with p by P (p) = {π−1
p (h) | h ∈ X/ ∼p} where πp is

the canonical projection from X to X/ ∼p.

Definition 1.3.1. Let X be a set, and P = {p : X → K} be a family of functions.

— We say that p is a labelling function on X and the pair (P, p) is called a labelled

partition of X.

— We say that x, y ∈ X are separated by p ∈ P if p(x) ̸= p(y) and we denote by

P(x|y) the set of all labelling functions separating x and y.

Remark 1.3.2. The terminology “x and y are separated by p” comes from the fact that,

if we denote by P the partition of X associated with p, x and y are separated by p if, and

only if, x and y belongs to two different sets of the partition P i.e. P separates x and y.

Consider a set P of labelling functions on X, and the K-vector space F(P ,K) of all
functions from P to K. Then we have a natural map c : X ×X → F(P ,K) given by : for

x, y ∈ X and p ∈ P ,

c(x, y)(p) = p(x)− p(y).

Notice that p belongs to P(x|y) if, and only if, c(x, y)(p) ̸= 0.
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Definition 1.3.3. Let X be a set and P be a family of labelling functions. The map

c : X ×X → F(P ,K) such that, for x, y ∈ X and for p ∈ P, c(x, y)(p) = p(x)− p(y) is

called the separation map of X relative to P .

We now define the notion of space with labelled partitions :

Definition 1.3.4 (Space with labelled partitions).

Let X be a set, P be a family of labelling functions from X to K and (F(P), ∥.∥) be a

semi-normed space of K-valued functions on P such that the quotient vector space F (P)

of F(P) by its subspace F(P)0 = {ξ ∈ F(P) | ∥ξ∥ = 0} is a Banach space.

We say that (X,P , F (P)) is a space with labelled partitions if, for all x, y ∈ X :

c(x, y) : P → K belongs to F(P).

Definition 1.3.5. If (X,P , F (P)) is a space with labelled partitions, we can endow X

with the following pseudo-metric : d(x, y) = ∥c(x, y)∥ for x, y ∈ X.

We call d the labelled partitions pseudo-metric on X.

Remark 1.3.6. If (X,P , F (P)) is a space with labelled partitions, then the separation

map c : X ×X → F (P) is continuous where X ×X is endowed with the product topology

induced by the topology of (X, d).

2. Actions on spaces with labelled partitions

Here, we describe the maps that preserve the structure of space with labelled partitions.

Definition 1.3.7 (homomorphism of spaces with labelled partitions). Let (X,P , F (P)),

(X ′,P ′, F ′(P ′)) be spaces with labelled partitions and let f : X → X ′ be a map from X to

X ′.

We say that f is a homomorphism of spaces with labelled partitions if :

1. for any p′ ∈ P ′, Φf (p
′) := p′ ◦ f belongs to P,

2. for all ξ ∈ F (P), ξ ◦ Φf belongs to F ′(P ′) and,

∥ξ ◦ Φf∥F ′(P′)
= ∥ξ∥

F (P)
.
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An automorphism of the space with labelled partitions (X,P , F (P)) is a bijective map

f : X → X such that f and f−1 are homomorphisms of spaces with labelled partitions

from (X,P , F (P)) to (X,P , F (P)).

Remark 1.3.8.

- If f is a homomorphism of spaces with labelled partitions, then f is an isometry from X to

X ′ endowed with their respective labelled partitions pseudo-metrics ; indeed, for x, y ∈ X,

dX(x, y) = ∥c(x, y)∥
F (P)

= ∥c(x, y) ◦ Φf∥F ′(P′)
= ∥c′(f(x), f(y))∥

F ′(P′)
= dX′(f(x), f(y)),

since we have c(x, y) ◦ Φf = c′(f(x), f(y)).

- If f is an automorphism of space with labelled partitions, the map Φf is a bijection :

(Φf )
−1 = Φf−1.

Proposition 1.3.9. Let (X,P , F (P)), (X ′,P ′, F ′(P ′)),(X ′′,P ′′, F ′′(P ′′)) be spaces with

labelled partitions and f : X → X ′, f ′ : X ′ → X ′′ be homomorphisms of spaces with

labelled partitions.

We denote Φf the map such that Φf (p
′) := p′ ◦ f , for p′ ∈ P ′, and Φf ′ the map such that

Φf ′(p′′) := p′′ ◦ f ′, for p′′ ∈ P ′′.

Then f ′ ◦ f is a homomorphism of spaces with labelled partitions from (X,P , F (P)) to

(X ′′,P ′′, F ′′(P ′′)) and we have, by denoting Φf ′◦f (p
′′) := p′′ ◦ (f ′ ◦ f) :

Φf ◦ Φf ′ = Φf ′◦f .

Proof. For all p′′ ∈ P ′′, we have :

Φf ′◦f (p
′′) = p′′ ◦ (f ′ ◦ f)

= (p′′ ◦ f ′) ◦ f

= Φf ′(p′′) ◦ f with Φf ′(p′′) ∈ P ′ by Definition 1.3.7

= Φf (Φf ′(p′′)) and hence,

Φf ′◦f (p
′′) = Φf ◦ Φf ′(p′′) ∈ P by Definition 1.3.7.

It follows that Φf ◦ Φf ′ = Φf ′◦f .

Now, let ξ ∈ F (P). Since ξ ◦ Φf belongs to F ′(P ′),

ξ ◦ Φf ′◦f = (ξ ◦ Φf ) ◦ Φf ′ ∈ F ′′(P ′′),
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and we clearly have, using the previous equality,

∥ξ ◦ Φf ′◦f∥F ′′(P′′) = ∥ξ ◦ Φf∥F ′(P′) = ∥ξ∥
F (P)

.

Remark 1.3.10. Assume a group G acts by automorphisms on (X,P , F (P)). For g ∈ G,

we denote by τ(g) : X → X, the map x 7→ τ(g)x = gx. Then, by Proposition 1.3.9, we

have :

Φτ(g2) ◦ Φτ(g1) = Φτ(g1g2).

Definition 1.3.11. Let (X,P , F (P)) be a space with labelled partitions and G be a topo-

logical group acting by automorphisms on (X,P , F (P)).

— We say that G acts continuously on (X,P , F (P)), if the G-action on (X, d) is

strongly continuous.

— We say that G acts properly on (X,P , F (P)), if the G-action on (X, d) is metri-

cally proper where d is the labelled partitions pseudo-metric on X.

Remark 1.3.12. Notice that if a topological Hausdorff group G acts properly continuously

by automorphisms on a space (X,P, F (P)) with labelled partitions, then it is locally com-

pact and σ-compact : in fact, let x0 ∈ X ; for r > 0, Vr = {g ∈ G | d(gx0, x0) ≤ r}
is a compact neighbourhood of the identity element e in G since the action on (X, d) is

strongly continuous and proper, and we have G = ∪n∈N∗Vn.

Proposition 1.3.13. Let G be a topological group. Assume G acts continuously by auto-

morphisms on (X,P , F (P)).

The G-action on (X,P, F (P)) is proper if, and only if, for every (resp. for some) x0 ∈ X,

∥c(gx0, x0)∥ → ∞ when g → ∞.

Proof. It follows immediatly from the definition of a metrically proper action.

Lemma 1.3.14 (pull back of space with labelled partitions). Let (X,PX , FX(PX)) be a

space with labelled partitions, Y be a set and f : Y → X be a map. Then there exists

a pull back structure of space with labelled partitions (Y,PY , FY (PY )) turning f into a

homomorphism.

Moreover, if G acts on Y and G acts continuously by automorphisms on (X,PX , FX(PX))

such that f is G-equivariant, then G acts continuously by automorphisms on (Y,PY , FY (PY )).
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Proof. We consider the family of labelling functions on Y :

PY = {p ◦ f | p ∈ PX},

and let cY be the separation map on Y associated with PY .

Let T : Vect
(
cY (y, y

′) | y, y′ ∈ Y
)
→ FX(PX) be the linear map such that T (cY (y, y

′)) =

cX(f(y), f(y
′)). The map T is well defined and is injective since, for every p ∈ PX ,

cX(f(y), f(y
′))(p) = p ◦ f(y)− p ◦ f(y′) = cY (y, y

′)(p ◦ f).

On Vect
(
cY (y, y

′) | y, y′ ∈ Y
)
, we consider the following norm :

for ξ ∈ Vect
(
cY (y, y

′) | y, y′ ∈ Y
)
, we set,

∥ξ∥PY
= ∥T (ξ)∥

FX (PX )
.

And we set FY (PY ) = Vect
(
cY (y, y′) | y, y′ ∈ Y

)∥·∥PY . Hence, by construction, (Y,PY , FY (PY ))

is a space with labelled partitions and f is clearly an homorphism from (Y,PY , FY (PY ))

to (X,PX , F (PX)) since, for all y, y
′ ∈ Y ,

cY (y, y
′) ◦ Φf = cX(f(y), f(y

′)),

where Φf (p) = p ◦ f for p ∈ PX .

Assume that G acts on Y via τY and G acts continuously by automorphisms on

(X,P , F (P)) via τX , and f is G-equivariant. We denote, for p ∈ PX and g ∈ G :

- ΦτX(g)(p) := p ◦ τX(g) and,
- ΦτY (g)(p ◦ f) := (p ◦ f) ◦ τY (g).

Since f is G-equivariant and PX is stable by τX , we have, for all p ∈ PX and all g ∈ G :

(p ◦ f) ◦ τY (g) = (p ◦ τX(g)) ◦ f ∈ PY .

Now, for every ξ ∈ FY (PY ) and every g ∈ G, we have :

∥ξ ◦ ΦτY (g)∥PY
= ∥T (ξ) ◦ ΦτX(g)∥FX (PX )

= ∥T (ξ)∥
FX (PX )

= ∥ξ∥PY
.

It follows that G acts by automorphisms on (Y,PY , FY (PY )).
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Moreover, we have, for every y ∈ Y and every g ∈ G, dY (τY (g)y, y) = dX(τX(g)f(y), f(y)),

where dX and dY are the labelled partitions pseudo-metric on respectivelyX and Y . Hence,

for y ∈ Y , y → τY (g)y is continuous from G to (Y, dY ).

Definition 1.3.15. Let (X,PX , FX(PX)) be a space with labelled partitions, Y be a set

and f : Y → X be a map. The structure of space with labelled partitions (Y,PY , FY (PY ))

given by Lemma 1.3.14 is called the pull back by f of the space with labelled partitions

(X,PX , FX(PX)).

1.3.2 Examples

1. Spaces with measured walls

Our first example of spaces with labelled partitions is given by spaces with measured

walls. Here we cite the definition of the structure of space with measured walls from

[CSV12].

Let X be a set. We endow 2X with the product topology and we consider, for x ∈ X, the

clopen subset of 2X , Ax := {A ⊂ X | x ∈ A}.

Definition 1.3.16. A measured walls structure is a pair (X,µ) where X is a set and µ

is a Borel measure on 2X such that for all x, y ∈ X :

dµ(x, y) := µ(Ax △Ay) < +∞

Proposition 1.3.17. Let (X,µ) be a measured space with walls. Then, for every real

number q ≥ 1, (X,P, Lq(P , µ)) is a space with labelled partitions where P = {1h | h ∈
2X}.
Morever, we have, for x, y ∈ X,

∥c(x, y)∥qq = dµ(x, y).

Proof. We denote P = {1h | h ∈ 2X}. Then P is a family of labelling functions on X and

we denote by c the separation map of X associated with P .

Let x, y ∈ X. For h ∈ 2X , we have :

c(x, y)(1h) = 1h(x)− 1h(y) = 1Ax(h)− 1Ay(h).

The function f : 2X → P such that, for h ∈ 2X , f(h) = 1h is a bijection, and we endow P
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with the direct image topology induced by f . Then, µ∗ : P → R such that, for any Borel

subset A of P, µ∗(A) = µ(f−1(A)) is a Borel measure on P .

We have ∥c(x, y)∥qq =
∫
P |c(x, y)(p)|qdµ∗(p) =

∫
2X

|1Ax(h)−1Ay(h)|qdµ(h) = µ(Ax△Ay),

and then :

∥c(x, y)∥qq = dµ(x, y) < +∞.

It follows that, for all x, y ∈ X, c(x, y) belongs to Lq(P , µ) and hence, (X,P , Lq(P , µ)) is
a space with labelled partitions.

h h
c

x

y

k

k
c

Examples of walls in Z2.

2. Gromov hyperbolic groups

The following Lemma is a reformulation of a result of Yu (see [Yu05], Corollary 3.2)

based on a construction of Mineyev in [Min01].

For a triple x, y, z in a metric space (X, d), we denote by (x|y)z = 1
2
(d(x, z) + d(y, z) −

d(x, y)).
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Lemma 1.3.18 (Mineyev, Yu). Let Γ be a finitely generated δ-hyperbolic group. Then

there exists a Γ-equivariant function h : Γ × Γ → Fc(Γ) where Fc(Γ) = {f : Γ →
R with finite support | ∥f∥1 = 1} such that :

1. for all a, x ∈ Γ, supp h(x, a) ⊂ B(a, 10δ),

2. there exists constants C ≥ 0 and ε > 0 such that, for all x, x′, a ∈ Γ,

∥h(x, a)− h(x′, a)∥1 ≤ Ce−ε(x|x′)a ,

3. there exists a constant K ≥ 0 such that, for all x, x′ ∈ Γ with d(x, x′) large enough,

#{a ∈ Γ | supp h(x, a) ∩ supp h(x′, a) = ∅} ≥ d(x, x′)−K.

Support of the labelling function associated with (a, b) with d(a, b) = 10δ.

This Lemma gives us a way to build a structure of labelled partitions on Gromov

hyperbolic groups :
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Proposition 1.3.19 (Labelled partitions on a δ-hyperbolic group). Let Γ be a finitely

generated δ-hyperbolic group and we denote P = {(a, b) ∈ Γ × Γ | d(a, b) ≤ 10δ}. There
exists q0 ≥ 1 such that, for all q > q0, (Γ,P , ℓq(P)) is a space with labelled partitions.

Remark 1.3.20. Notice that, stated this way, P is not a set of labelling functions on Γ.

Implicitely, we do the following identification :

{(a, b) ∈ Γ× Γ | d(a, b) ≤ 10δ} ∼ {x 7→ h(a, x)(b) | (a, b) ∈ Γ2 with d(a, b) ≤ 10δ}.

In fact, x 7→ h(a, x)(b) is uniquely determined by the pair (a, b).

Proof of Proposition 1.3.19. We fix a finite generating set of Γ and we denote d the word

metric associated with it (and such that Γ is Gromov hyperbolic of constant δ with respect

to d). As Γ is uniformly locally finite, there exists a constant k > 0 such that, for all r > 0

and x ∈ Γ, #B(x, r) ≤ kr.

Let ε be as in 2. Lemma 1.3.18 and set q0 =
ln(k)
ε

. Let q > q0. Then for all q > q0,∑
n∈N

kne−nqε < +∞.

Let h be the function given by Lemma 1.3.18 and notice that, for x, x′, a ∈ Γ, since

#supp(h(x, a)) ≤ k,

∥h(x, a)− h(x′, a)∥q ≤ 2k
1
q ∥h(x, a)− h(x′, a)∥1. (∗)

As said in the previous remark, we can see P as a set of labelling functions on Γ using

the function h : we set, for (a, b) ∈ P and x ∈ Γ,

(a, b)(x) := h(x, a)(b).

We denote by c the separation map associated with P. We have, for x, x′ ∈ Γ,
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∥c(x, x′)∥qℓq(P) =
∑

(a,b)∈P

|h(x, a)(b)− h(x, a)(b)|q,

=
∑
a∈Γ

∥h(x, a)− h(x, a)∥qq by 1. Lemma 1.3.18,

≤
∑
a∈Γ

2qk∥h(x, a)− h(x, a)∥q1 by (∗),

≤ (2C)qk
∑
a∈Γ

e−qε(x|x′)a by 2. Lemma 1.3.18,

≤ (2C)qk
∑
a∈Γ

e−qε(d(x,a)−d(x,x′)),

≤ (2C)qk
∑
n∈N

kne−qε(n−d(x,x′)), and hence, since q > q0 :

∥c(x, x′)∥pℓp(P) ≤ (2C)qeqεd(x,x
′) < +∞

Thus c(x, x′) belongs to ℓp(P) for all x, x′ ∈ Γ. It follows that (Γ,P , ℓp(P)) is a space with

labelled partitions.

Proposition 1.3.21. Let Γ be a finitely generated δ-hyperbolic group. Let q0 ≥ 1 as in

Proposition 1.3.19 and for q > q0, let (Γ,P , ℓq(P)) be the space with labelled partitions

given by Proposition 1.3.19. Then the action of Γ by left-translation on itself induces a

proper action of Γ by automorphisms on (Γ,P, ℓq(P)).

Proof. We keep the notations used in the proof of Proposition 1.3.19. We first show that

Γ acts by automorphisms on (Γ,P , ℓq(P)). Let γ, x ∈ Γ and (a, b) ∈ P . Since h is Γ-

equivariant, we have :

Φγ((a, b))(x) = (a, b)(γx) = h(γx, a)(b) = h(x, γ−1a)(γ−1b) = (γ−1a, γ−1b)(x),

And hence,

Φγ((a, b)) = (γ−1a, γ−1b) ∈ P .

Moreover, for ξ ∈ ℓq(P), we have :

∥ξ ◦ Φγ∥qℓq(P)
=
∑

(a,b)∈P

|ξ(γ−1a, γ−1b)|q,

=
∑

(γa,γb)∈P

|ξ(a, b)|q,

=
∑

(a,b)∈P

|ξ(a, b)|q,

∥ξ ◦ Φγ∥qℓq(P)
= ∥ξ∥q

ℓq(P)
.
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It follows that Γ acts by automorphisms on (Γ,P, ℓq(P)).

Now, consider the identity element e of Γ and let γ ∈ Γ.

We denote A = {a ∈ Γ | supp h(γ, a) ∩ supp h(e, a) = ∅}. Notice that for every x, a ∈ Γ,

∥h(x, a)∥q ≥ 1
k
. We have, by 3. Lemma 1.3.18, when d(γ, e) is large enough :

∥c(γ, e)∥q
ℓq(P)

=
∑
a∈Γ

∥h(γ, a)− h(e, a)∥qq,

≥
∑
a∈A

∥h(γ, a)− h(e, a)∥qq ≥
∑
a∈A

(
2

k
)q, since ∥h(x, a)∥q ≥ 1

k

∥c(γ, e)∥q
ℓq(P)

≥ (
2

k
)q(d(γ, e)−K).

And hence, when γ → ∞ in Γ, we have : ∥c(γ, e)∥q
ℓq(P)

≥ ( 2
k
)q(d(γ, e)−K) → +∞.

3. Labelled partitions on metric spaces

It turns out that any pseudo-metric spaces (X, d) can be realized as a space with

labelled partitions (X,P , F (P)) with F (P) ≃ ℓ∞(X) and such that the pseudo-metric of

labelled partitions is exactly d :

Proposition 1.3.22. Let (X, d) be a pseudo-metric space and consider the family of

labelling functions on X :

P = {pz : x 7→ d(x, z) | z ∈ X}.

Then (X,P , ℓ∞(P)) is a space with labelled partitions.

Moreover, for all x, y ∈ X,

dP(x, y) = d(x, y),

where dP is the pseudo-metric of labelled partitions on X.

Proof. Let c be the separation map associated with P = {pz : x 7→ d(x, z) | z ∈ X}. For
x, y ∈ X and pz ∈ P , we have :

c(x, y)(pz) = pz(x)− pz(y) = d(x, z)− d(y, z) ≤ d(x, y),

and, in particular, c(x, y)(py) = d(x, y), then,

∥c(x, y)∥∞ = sup
pz∈P

|c(x, y)(pz)| = d(x, y).
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Hence, (X,P , ℓ∞(P)) is a space with labelled partitions and dP(x, y) = ∥c(x, y)∥∞ =

d(x, y).

This result motivates the study of structures of spaces labelled partitions on a pseudo-

metric space X : can we find other Banach spaces than ℓ∞(X) which gives a realization

of the pseudo-metric on X as a pseudo-metric of labelled partitions ?

A first element of answer is given by the case of the discrete metric on a set. On every

set, we can define a structure of labelled partitions which gives the discrete metric on this

set :

Proposition 1.3.23. Let X be a set and P = {∆x | x ∈ X} be the family of labelling

functions where, for x ∈ X, ∆x = 2−
1
q δx.

Then, for every q ≥ 1, (X,P , ℓq(P)) is a space with labelled partitions.

Proof. We have, for x, y, z ∈ X with x ̸= y :

c(x, y)(∆z) = ∆z(x)−∆z(y) =

0 if z /∈ {x, y}

±2−
1
q otherwise.

and then,

∥c(x, y)∥qq =
∑
z∈X

|c(x, y)(∆z)|q = |c(x, y)(∆x)|q + |c(x, y)(∆y)|q = 1.

Notice that the labelled partitions pseudo-metric d on X in this case is precisely the

discrete metric on X i.e. d(x, y) = 1 for all x, y ∈ X, x ̸= y.

Definition 1.3.24 (Naive ℓq space with labelled partitions). Let X be a set and P =

{∆x | x ∈ X}.

For q ≥ 1, (X,P , ℓq(P)) is called the naive ℓq space with labelled partitions of X.

Remark 1.3.25. Let X be a set, q ≥ 1 and G a group acting on X. Then G acts by

automorphisms on the naive ℓq space with labelled partitions of X.

In fact, if, for g ∈ G, we denote τ(g) : x 7→ gx, we have, for z ∈ X,

∆z ◦ τ(g) = ∆g−1z ∈ P ,
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and, for all ξ ∈ ℓq(P),

∥ξ ◦ Φτ(g)∥qq =
∑
x∈X

|ξ(∆gx)|q =
∑

g−1x∈X

|ξ(∆x)|q =
∑
x∈X

|ξ(∆x)|q = ∥ξ∥qq.

4. Labelled partitions on Banach spaces

Every Banach space has a natural structure of space with labelled partitions and the

metric of labelled partitions of this structure is exactly the metric induced by the norm.

Let f be a K-valued function on a set B and k ∈ K. We denote f + k := {x 7→ f(x)+ k}.

Definition 1.3.26. Let B be a Banach space and B′ be its topological dual. The set :

P = {f + k | f ∈ B′, k ∈ K}

is called the natural family of labelling functions on B.

Let c be the separation map on B associated with P. We denote :

δ(P) = {c(x, x′) | x, x′ ∈ B}.

Remark 1.3.27. This definition and the fact that the natural family of labelling functions

contains the constant functions are motivated by the following : as we shall see in Lemma

1.3.30, a G-action on a Banach space B by affine isometries induces an action of G on

the natural family of labelling functions on B.

Proposition 1.3.28. Let (B, ∥· ∥) be a Banach space and P be its natural family of

labelling functions. Then δ(P) is isomorph to B and (B,P , δ(P)) is a space with labelled

partitions where δ(B) is viewed as an isometric copy of B. Moreover, we have, for x, x′ ∈
B :

d(x, x′) = ∥x− x′∥,

where d is the pseudo-metric of labelled partitions on (B,P , δ(P)).

Proof. Let P := {f +k | f ∈ B′, k ∈ K} and let c be the separation map on B associated

with P . Notice that for all x, x′ ∈ B, c(x− x′, 0) = c(x, 0)− c(x′, 0) = c(x, x′). Then the

map T : B → δ(B) such that x 7→ c(x, 0) is clearly a surjective linear operator. Now,

we have c(x, 0) = 0 ⇔ ∀f ∈ B′, f(x) = 0, and hence, by Hahn-Banach Theorem, T is

injective. It follows that T is an isomorphism.

The quantity ∥c(x, x′)∥
δ(P)

:= ∥x−x′∥ defines a norm on δ(P) and hence, (δ(P), ∥.∥
δ(P)

) is
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a Banach space as T is an isometric isomorphism. It follows immediately that (B,P , δ(P))

is a space with labelled partitions.

Definition 1.3.29. Let B be a Banach space. The space with labelled partitions (B,P , δ(P))

where P = {f + k | f ∈ B′, k ∈ K} and δ(P) ≃ B is called the natural structure of

labelled partitions on B.

Lemma 1.3.30. Let G be a topological group. Then a continuous isometric affine action

of G on a Banach space B induces a continuous action of G by automorphisms on the

natural space with labelled partitions (B,P , δ(P)) on B.

Proof. Let α be a continuous isometric affine action of G on a Banach space B with

linear part π and translation part b. Let (B,P , δ(P)) be the natural space with labelled

partitions on B.

Notice that for all f ∈ B′, f ◦ π(g) ∈ B′ since π is an isometric representation. Hence, for

all g ∈ G and p = f + k ∈ P :

p ◦ α(g) = f ◦ α(g) + k = f ◦ π(g) + (k + f(b(g))) ∈ P .

We denote, for g ∈ G and p ∈ P , Φg(p) = p◦α(g). We have, for g ∈ G and c(x, x′) ∈ δ(P),

∥c(x, x′) ◦ Φg∥δ(P)
= ∥c(α(g)x, α(g)x′)∥

δ(P)
,

= ∥α(g)x− α(g)x′∥,
= ∥π(g)(x− x′)∥,
= ∥x− x′∥,

∥c(x, x′) ◦ Φg∥δ(P)
= ∥c(x, x′)∥

δ(P)
.

It follows that G acts by automorphisms on (B,P , δ(P)) and this action is clearly conti-

nuous since d(x, x′) = ∥x− x′∥ where d is the pseudo-metric of labelled partitions.

1.3.3 Link with isometric affine actions on Banach spaces

In this section, we aim to prove the two statements of Theorem 1 which gives an analog

of the equivalence between proper actions on spaces with measured walls and Haagerup

property in terms of proper actions on spaces with labelled partitions and isometric affine

actions on Banach spaces ; and more particularly in the case of Lp spaces, using Hardin’s

result about extension of isometries on closed subspaces of Lp spaces.
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Theorem 1.

Let G be topological group.

1. If G acts (resp. acts properly) continuously by affine isometries on a Banach space B

then there exists a structure (G,P , F (P)) of space with labelled partitions on G such

that G acts (resp. acts properly) continuously by automorphisms on (G,P , F (P)) via

its left-action on itself. Moreover, there exists a linear isometric embedding F (P) ↪→
B.

2. If G acts (resp. acts properly) continuously by automorphisms on a space with label-

led partitions (X,P , F (P)) then there exists a (resp. proper) continuous isometric

affine action of G on a Banach space B. Moreover, B is a closed subspace of F (P).

Corollary 2.

Let p ≥ 1 with p /∈ 2Z ∖ {2} and G be a topological group. G has property PLp if, and

only if, G acts properly continuously by automorphisms on a space with labelled partitions

(X,P , F (P)) where F (P) is isometrically isomorph to a closed subspace of an Lp space.

Proof of Corollary 2. The direct implication follows immediately from 1) Theorem 1.

Now, assume G acts properly continuously by automorphisms on a space (X,P , F (P))

and T : F (P) ↪→ Lp(X,µ) is a linear isometric embedding.

By 2) Theorem 1, there is a proper continuous isometric affine action α of G on a closed

subspace B of F (P) with α(g) = π(g) + b(g). Thus, as T is a linear isometry, T (B) is a

closed subspace of Lp(X,µ) and α′ such that α′(g) = T ◦π(g)◦T−1+T (b(g)) is a continuous

isometric affine action of G on T (B). Then, by Corollary 1.2.10, G has property PLp.

1. Labelled partitions associated with an isometric affine action

In this part, we introduce the space with labelled partitions associated with a conti-

nuous isometric affine action of a topological group G and we give a proof of 1) Theorem

1 by defining an action of G by automorphisms on this structure.

Given a continuous isometric affine action on a Banach space, we consider the pullback

of the natural structure of space with labelled partitions of the Banach space on the group

itself :

Definition 1.3.31. Let G be a topological group and α be a continuous isometric affine

action of G on a Banach space (B, ∥.∥) with translation part b : G → B. Consider the
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pullback (G,Pα, Fα(Pα)) by b of the natural space with labelled partitions (B,P , δ(P)) on

B, where P = B′ and δ(P) ≃ B.

The triple (G,Pα, Fα(Pα)) is called the space with labelled partitions associated with α.

More precisely, we have :

Pα = {f ◦ b+ k | f ∈ B′, k ∈ K} ;

Fα(Pα) ≃ Vect(b(G))
∥.∥

;

Remark 1.3.32. - The linear map T : Fα(Pα) ↪→ B such that T : cα(g, h) 7→ b(g)− b(h)

is an isometric embedding, where cα is the separation map on G associated with Pα.

- If the continuous isometric affine action α is linear i.e. b(G) = {0}, then the space

(G,Pα, Fα(Pα)) with labelled partitions associated with α is degenerated in the sense that

the quotient metric space associated with (G, d) contains a single point, Pα contains only

the zero function from G to K and Fα(Pα) = {0}.

Proposition 1.3.33. Let G be a topological group and (G,P , F (P)) be the space with

labelled partitions associated with a continuous isometric affine action of G on a Banach

space B.

Then the action of G on itself by left-translation induces a continuous action of G by

automorphisms on (G,P , F (P)).

Proof. Let α be a continuous isometric affine action of G on a Banach space B with

translation part b : G → B. By Lemma 1.3.30, G acts continuously on the natural

space with labelled partitions on (B,P , δ(P)) on B. Moreover, the map b is G-equivariant

since we have, for g, h ∈ G, b(gh) = α(g)b(h). By Lemma 1.3.14, it follows that the

G-action on itself by left-translation induces a continuous action by automorphisms on

(G,P , F (P)).

Proof of 1) Theorem 1. Assume α is continuous isometric affine action of G on a Banach

space (B, ∥.∥) with translation part b and let G.

By Proposition 1.3.33, theG-action by left-translation on itself induces a continuous action

by automorphisms on the space with labelled partitions associated with α, (G,Pα, Fα(Pα)).

Moreover, assume α is proper. Then, by Remark 1.3.32, we have :

dα(g, e) = ∥b(g)∥ −→
g→∞

+∞,

and hence, the G-action by automorphisms on (G,Pα, Fα(Pα)) is proper.
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2. From actions on a space with labelled partitions to isometric affine actions

We prove here statement 2) of Theorem 1 by giving a (non-canonical) way to build

a proper continuous isometric affine action on a Banach space given a proper continuous

action by automorphisms on space with labelled partitions.

Lemma 1.3.34. Let G be a topological group, (X,P , F (P)) be a space with labelled parti-

tions and we denote E = Vect(c(x, y) | x, y ∈ X) where c is the separation map associated

with P.

If G acts continuously by automorphisms on (X,P , F (P)), then, for all x, y ∈ X, (g, h) 7→
c(gx, hy) is continuous from G×G to E.

Proof. Consider on the subspace E of F (P) the topology given by the norm ∥.∥ of F (P).

If X × X is endowed with the product topology of (X, d), as said in Remark 1.3.6,

c : X × X → E is continuous and, since the G-action on X is strongly continuous,

for all x, y ∈ X, (g, h) 7→ (gx, hy) is continuous. Then, by composition, for all x, y ∈ X,

(g, h) 7→ c(gx, hy) is continuous.

Proposition 1.3.35. Let G be a topological group acting continuously by automorphisms

on a space with labelled partitions (X,P , F (P)). Then there exists a continuous isometric

affine action of G on a Banach subspace B of F (P).

More precisely, B = Vect(c(x, y) | x, y ∈ X)
∥.∥

where c is the separation map associated

with P and ∥.∥ is the norm of F (P), and moreover, the linear part π and the translation

part b of the affine action are given by, for a fixed x0 ∈ X :

π(g)ξ = ξ ◦ Φτ(g) for g ∈ G and ξ ∈ B;

and

b(g) = c(gx0, x0) for g ∈ G.

Proof. Let τ be the G-action on X.

By Definition 1.3.7 and Remark 1.3.10, the map Φτ(g) : P → P such that Φτ(g)(p) = p◦τ(g)
induces a linear representation π of G on F (P) given by, for ξ ∈ F (P) and g ∈ G :

π(g)ξ = ξ ◦ Φτ(g).

By the second requirement of Definition 1.3.7, we have ∥π(g)ξ∥ = ∥ξ∥. Thus, π is an

isometric linear representation of G on F (P).

37



Consider E = Vect(c(x, y) | x, y ∈ X). Then the Banach subspace B = E
∥.∥

of F (P) is

stable under π since π(g)(c(x, y)) = c(gx, gy) for x, y ∈ X, g ∈ G. Let us show that the

representation π of G on B is strongly continuous. Let ξ =
∑n

i=1 λic(xi, yi) ∈ E. We have,

for g ∈ G,

π(g)ξ = ξ ◦ Φτ(g) =
n∑

i=1

λic(gxi, gyi) ∈ E,

and, by Lemma 1.3.34, for every i, g 7→ c(gxi, gyi) is continuous.

Hence, g 7→
∑n

i=1 λic(gxi, gyi) = π(g)ξ is continuous. Finally, by density, for all ξ ∈ B,

g 7→ π(g)ξ is continuous from G to B.

Now, let us define the translation part of the action. Fix x0 ∈ X and set, for all g ∈ G,

b(g) = c(gx0, x0) ∈ E. We claim b is a continuous 1-cocycle relative to π ; indeed, we have,

for g ∈ G, x, y ∈ X, c(gx, gy) = c(x, y) ◦ Φτ(g) = π(g)c(x, y) and then, for g, h ∈ G,

b(gh) = c(ghx0, x0) = c(ghx0, gx0) + c(gx0, x0) = π(g)b(h) + b(g).

The continuity of b follows immediatly from Lemma 1.3.34.

Hence, the morphism α : G → Isom(B) ∩ Aff(B) defined by, for all g ∈ G, ξ ∈ B,

α(g)ξ = π(g)ξ + b(g) is a continuous isometric affine action of G on B.

Remark 1.3.36. In the case where G is discrete, we do not have to find a subspace

of F (P) on which the representation is strongly continuous ; then we have the following

statement :

If G discrete acts by automorphisms on (X,P , F (P)), then there exists an isometric affine

action of G on F (P).

Proof of 2) Theorem 1. Assume G acts properly continuously on a space with labelled

partitions (X,P , F (P)).

Consider the action α on the Banach subspace B = E
∥.∥

given by prop 1.3.35, where

E = Vect(c(x, y) | x, y ∈ X) and α(g)ξ = π(g)ξ + b(g), for g ∈ G, ξ ∈ B.

Then we have, if we denote by d the pseudo-metric of labelled partitions on X :

∥b(g)∥ = ∥c(gx0, x0)∥P = d(gx0, x0) −→
g→∞

∞

since the action of G on (X,P , F (P)) is proper, and hence, α is a proper continuous

isometric affine action of G on B.
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1.4 Labelled partitions on a direct sum

In this section, we define a space with labelled partitions on the direct sum of a

countable family of spaces with labelled partitions and we build on it a proper action

given by proper actions on each factor.

1.4.1 Natural space with labelled partitions on a direct sum

Given a family of space with labelled partitions, we give a natural construction of a

space with labelled partitions on the direct sum of this family. A similar construction in

the case of spaces with measured walls can be found in [CMV04].

Definition 1.4.1. Let I be an index set, (Xi)i∈I be a family of non empty sets and fix

x0 = (x0i )i∈I ∈
∏

i∈I Xi.

The direct sum of the family (Xi)i∈I relative to x0 is defined by :

x0
⊕
i∈I

Xi :=

{
(xi)i∈I ∈

∏
i∈I

Xi | xi ̸= x0i for finitely many i ∈ I

}
.

For i ∈ I, we denote by πX
Xi

: X → Xi the canonical projection from the direct sum to the

factor Xi.

For x = (xi)i∈I ∈ x0
⊕

i∈I Xi, the support of x is the finite subset of I :

supp(x) = {i ∈ I | xi ̸= x0i }.

Definition 1.4.2. Let I be an index set, ((Xi,Pi, Fi(Pi)))i∈I be a family of spaces with

labelled partitions and fix x0 = (x0i )i∈I ∈
∏

i∈I Xi. We denote X = x0
⊕

i∈I Xi.

Let i ∈ I. For pi ∈ Pi, we define the labelling function p⊕i
i : X → K by :

p⊕i
i = pi ◦ πX

Xi
.

i.e., for x = (xi)i∈I ∈ X, p⊕i
i (x) = pi(xi).

We denote P⊕i
i = {p⊕i

i | pi ∈ Pi}, and we call the set

PX =
∪
i∈I

P⊕i
i
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the natural family of labelling functions on X (associated with the family (Pi)i∈I).

Let X1, X2 be non empty sets and P1,P2 be families of labelling functions on, respec-

tively, X1 and X2.

In terms of partitions, if P1 is the partition of X1 associated with p1 ∈ P1, the partition

P⊕1
1 of X1 ×X2 associated with p⊕1

1 is :

P⊕1
1 = {h×X2 | h1 ∈ P1},

and similarly, for p2 ∈ P2, we have :

P⊕2
2 = {X1 × k | k1 ∈ P2}.

Partitions for the direct product

Definition 1.4.3. Let I be a countable index set, ((Xi,Pi, Fi(Pi)))i∈I be a family of spaces

with labelled partitions and fix x0 = (x0i )i∈I ∈
∏

i∈I Xi. We denote X = x0
⊕

i∈I Xi.

Let i ∈ I. For ξi ∈ Fi(Pi), we denote ξ⊕i
i : PX → K the function :

ξ⊕i
i (p) =

ξi(pi) if p = p⊕i
i ∈ P⊕i

i

0 if p = p
⊕j

j ∈ P⊕j

j with i ̸= j
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Let q ≥ 1. We denote Fq(PX) the closure of

Eq(PX) :=

{∑
i∈I

ξ⊕i
i | ξi ∈ Fi(Pi) with ξi ̸= 0 for a finite number of i ∈ I

}
,

endowed with the norm ∥.∥Nq defined by, for ξ =
∑

i∈I ξ
⊕i
i :

∥ξ∥Nq :=

(∑
i∈I

∥ξi∥qFi(Pi)

) 1
q

.

The vector space Fq(PX) is called the q-space of functions on PX of X.

Proposition 1.4.4. Let I be a countable index set and ((Xi,Pi, Fi(Pi)))i∈I be a family of

spaces with labelled partitions and fix x0 = (x0i )i∈I ∈
∏

i∈I Xi. We denote X = x0
⊕

i∈I Xi.

Then (Fq(PX), ∥.∥Nq) is isometrically isomorph to (
⊕q

i∈I Fi(Pi), ∥.∥q). In particular, Fq(PX)

is a Banach space.

1.4.2 Action on the natural space with labelled partitions of the

direct sum

Let I be an index set and (Hi)i∈I be a family of groups. We denote eW = (eHi
)i∈I

where, for i ∈ I, eHi
is the identity element of Hi.

We simply denote
⊕
i∈I

Hi the group W =
eW⊕

i∈I

Hi whose identity element is eW .

Proposition 1.4.5.

Let I be a countable set and (Hi)i∈I be a family of groups such that, for each i ∈ I,

Hi acts by automorphisms on a space with labelled partitions (Xi,Pi, Fi(Pi)). We denote

X = x0
⊕

i∈I Xi and W =
⊕

i∈I Hi.

Let q ≥ 1. Then W acts by automorphisms on the natural space with labelled partitions

on the direct sum (X,PX , Fq(PX)) via the natural action of W on X.

Proof. We denote by τ the W -action on X and for w ∈ W , p ∈ PX , Φτ(w)(p) := p ◦ τ(w)
and, for i ∈ I, we denote by τi the Hi-action on X and for hi ∈ Hi, pi ∈ Pi, Φτi(hi)(pi) :=

pi ◦ τi(hi).

Let p ∈ PX =
∪

i∈I P
⊕i
i and w = (hi)i∈I ∈ W . Then there exists i ∈ I and pi ∈ Pi such
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that p = p⊕i
i , and we have :

Φτ(w)(p
⊕i
i ) = (Φτi(hi)(pi))

⊕i ∈ P⊕i
i ⊂ PX ,

since Φτi(hi)(pi) belongs to Pi.

For ξ =
∑

i∈I ξ
⊕i
i ∈ Eq(PX), we have :

ξ ◦ Φτ(w)(p) = ξ(p⊕i
i ◦ τ(w))

= ξ((pi ◦ τi(hi))⊕i)

= ξ⊕i
i ((pi ◦ τi(hi))⊕i)

= ξi(pi ◦ τi(hi))

= ξi ◦ Φτi(hi)(pi)

ξ ◦ Φτ(w)(p) = (ξi ◦ Φτi(hi))
⊕i(p⊕i

i ),

And hence,

ξ ◦ Φτ(w) =
∑
i∈I

(ξi ◦ Φτi(hi))
⊕i ∈ Fq(PX).

By completeness of Fq(PX), for all ξ ∈ Fq(PX), ξ ◦ Φτ(w) ∈ Fq(PX).

Moreover, for ξ =
∑

i∈I ξ
⊕i
i ∈ Eq(PX), we have :

∥ξ ◦ Φτ(w)∥qNq
=
∑
i∈I

∥ξi ◦ Φτi(hi)∥qFi(Pi)
=
∑
i∈I

∥ξi∥Fi(Pi)
= ∥ξ∥qNq

,

since, for all i ∈ I, ∥ξi ◦ Φτi(hi)∥Fi(Pi)
= ∥ξi∥Fi(Pi)

.

Thus, by density of Eq(PX) in Fq(PX), for all ξ ∈ Fq(PX), ∥ξ ◦ Φτ(w)∥Nq = ∥ξ∥Nq .

It follows that W acts by automorphisms on (X,PX , Fq(PX)).

When I is finite, X = x0
⊕

i∈I Xi is simply the direct sum of the Xi and does not

depend on x0. In this case, proper continuous actions on each factor (Xi,Pi, Fi(Pi)) induce

a proper continuous action on the natural space with labelled partitions of the direct sum

(X,PX , Fq(PX)) :

Proposition 1.4.6. Let n ∈ N∗. For i ∈ I = {1, ..., n}, let Hi be a topological group

acting properly continuously on a space with labelled partitions (Xi,Pi, Fi(Pi)) ; we denote

X = X1 × ...×Xn and W = H1 × ...×Hn.
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Let q ≥ 1. Then W acts properly continuously by automorphisms on the natural space

with labelled partitions of the direct product (X,PX , Fq(PX)) via the natural action of W

on X.

Proof. We denote by c the separation map associated with PX and, for i ∈ I, ci the

separation map associated with Pi. By Proposition 1.4.5, W acts by automorphisms on

(X,PX , Fq(PX)) and since I is finite, notice that w = (hi) → ∞ in W if, and only if,

there exists j ∈ I such that hj → ∞ in Hj.

Thus, for any x = (x1, ..., xn) ∈ X, we have, for w = (hi) ∈ W and any j ∈ I :

∥c(wx, x)∥qNq
=

n∑
i=1

∥c(hixi, xi)∥qFi(Pi)
≥ ∥c(hjxj, xj)∥qFj(Pj)

.

It follows that, when w → ∞ in W , ∥c(wx, x)∥Nq → +∞ and then W acts properly on

(X,PX , Fq(PX)). It remains to prove that the W -action on (X, d) is strongly continuous

where W is endowed with the product topology of the Hi’s. Remark that d = (
∑n

i=0 d
q
i )

1
q ,

then, the topology of (X, d) is equivalent to the product topology of the Xi’s on X.

Let x = (xi)i∈I ∈ X. We denote by τx : W → X the function w 7→ wx. For all i ∈ I,

πX
Xi

◦ τx : w → hixi is continuous since hi → hixi is continuous ; hence it follows that τx is

continuous.

If I is countably infinite, even if each Hi-action on (Xi,Pi, Fi(Pi)) is proper, W

does not act properly on the natural space with labelled partitions on the direct sum

(X,PX , Fq(PX)) in general. In fact, let C be a positive real constant, and assume there

exists, in each Hi, an element hi such that ∥ci(hix0i , x0i )∥Fi(Pi)
≤ C. For j ∈ I, the element

δj(hj) of W such that πW
Hi
(δj(hj)) = eHi

if i ̸= j and πW
Hj
(δj(hj)) = hj leaves every finite

set of W when j leaves every finite set of I, but :

∥c(δj(hj)x0, x0)∥Fq(PX )
= ∥ci((hj)x0i , x0i )∥Fi(Pi)

≤ C.

And then, W does not act properly on (X,PX , Fq(PX)).

To make W act properly on a space with labelled partitions in the case where W is en-

dowed with the discrete topology, we have to define a structure of labelled partitions on

W such that the labelled partitions metric between eW and w goes to infinity when the

support of w leaves every finite set in I. To build this structure, we scale every labelling

function of the naive ℓq space with labelled partitions on each factor Hi by a weight de-

pending on i which grows as i leaves every finite set in I.
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Notation 1.4.7. Let I be a countable index set and X = x0
⊕

i∈I Xi be a direct sum of

sets Xi’s.

We say that, for x ∈ X, supp(x) leaves every finite set in I or supp(x) → ∞ in I if there

exists j ∈ supp(x) which leaves every finite set in I.

Proposition 1.4.8. Let I be a countable index set and X = x0
⊕

i∈I Xi be a direct sum

of countable sets Xi’s. Then, an element x = (xi)i∈I ∈ X leaves every finite set in X if

either there exists j ∈ I such that xj leaves every finite set in Xj or supp(x) leaves every

finite set in I.

Definition 1.4.9. Let X be a set and w be a non-negative real.

We set, for x ∈ X :
(w)∆x := 2−

1
qwδx : X → K,

where δx : X → {0, 1} is the Dirac function at x, and we call the set

(w)∆ := {(w)∆x | x ∈ X},

the w-weighted naive family of labelling functions on X.

Proposition 1.4.10. Let X be a set and w be a non-negative real.

Let q ≥ 1. Then the triple (X, (w)∆, ℓq((w)∆)) is a space with labelled partitions.

Moreover, if a group H acts on X, then H acts by automorphisms on (X, (w)∆, ℓq((w)∆)).

Proof. It is a straightfoward generalization of Proposition 1.3.23 and Remark 1.3.25.

Subsquently, for a countably infinite set I, we consider a function ϕ : I → R+ such that

ϕ(i) −→
i→∞

+∞ (such a function always exists when I is countably infinite : for instance,

take any bijective enumeration function ϕ from I to N).

Lemma 1.4.11. Let I be a countably infinite set and (Hi)i∈I be a family of countable

discrete groups and we denote W the group
⊕

i∈I Hi endowed with the discrete topology.

Consider, on each Hi, the ϕ(i)-weighted naive family of labelling functions (ϕ(i))∆ and

we denote by (ϕ)∆ =
∪

i∈I
(ϕ(i))∆⊕i the natural set of labelling functions associated with

((ϕ(i))∆)i∈I .

Let q ≥ 1. Then, W acts by automorphisms on the natural space with labelled partitions
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on the direct sum (W, (ϕ)∆,Fq(
(ϕ)∆)).

Moreover, we have :

∥cϕ(w, eW )∥
Fq(

(ϕ)∆)
→ +∞ when supp(w) → ∞ in I,

where cϕ is the separation map associated with (ϕ)∆.

Proof. By Proposition 1.4.5,W acts by automorphisms on (W, (ϕ)∆,Fq(
(ϕ)∆)) and we have,

for w = (hi), w
′ = (h′i) ∈ W :

∥cϕ(w,w′)∥q
Fq(

(ϕ)∆)
=
∑
i∈I

∥cϕ(i)(hi, h′i)∥qq

=
∑

i∈supp(w−1w′)

ϕ(i)q.

Let w ∈ W such that supp(w) → ∞ in I. Then there exists j ∈ supp(w) such that j → ∞
in I and hence :

∥cϕ(w, eW )∥q
Fq(

(ϕ)∆)
=

∑
i∈supp(w)

ϕ(i)q ≥ ϕ(j)q → +∞.

Proposition 1.4.12. Let I be a countably infinite set and (Hi)i∈I be a family of countable

discrete groups such that, for each i ∈ I, Hi acts properly by automorphisms on a space

with labelled partitions (Xi,Pi, Fi(Pi)). We denote X = x0
⊕

i∈I Xi and W =
⊕

i∈I Hi

endowed with the discrete topology.

Let q ≥ 1. Then there exists a structure of space with labelled partitions (Y,PY , Fq(PY ))

on which W acts properly by automorphisms.

More precisely, (Y,PY , F (PY )) is the natural space with labelled partitions on the direct

product Y = X ×W where :

— on X, we consider the natural space with labelled partitions on the direct sum of

the family ((Xi,Pi, Fi(Pi)))i∈I ;

— on W , we consider the natural space with labelled partitions on the direct sum of

the family ((Hi,
(ϕ(i))∆, ℓq((ϕ(i))∆)))i∈I where for i ∈ I, (ϕ(i))∆ is the ϕ(i)-weighted

naive family of labelling functions on Hi.

Proof. By Proposition 1.4.5, W acts by automorphisms on both (X,PX , Fq(PX)) and

(W, (ϕ)∆, ℓq((ϕ)∆)). We set Y = X × W and consider the natural space with labelled
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partitions (Y,PY , Fq(PY )) on the direct product where :

P = P⊕1
X ∪ (ϕ)∆⊕2 ,

and

Fq(P) ≃ Fq(PX)⊕ ℓq((ϕ)∆).

Then, by Proposition 1.4.5,W ×W acts by automorphisms on (Y,PY , Fq(PY )) via the ac-

tion (w1, w2).(x,w) = (w1.x, w2w). Hence, W acts by automorphisms on (Y,PY , Fq(PY )),

where W is viewed as the diagonal subgroup {(w,w) | w ∈ W} < W ×W .

It remains to prove that the W -action on (Y,PY , Fq(PY )) is proper. We have, for

w = (hi) ∈ W :

∥cPY
(w.(x0, eW ), (x0, eW ))∥q

Fq(PY )
= ∥cPX

(w.x0, x0)∥qFq(PX )
+ ∥cϕ(w, eW )∥qq

=
∑

i∈supp(w)

∥c(hix0i , x0i )∥qFi(Pi)
+

∑
i∈supp(w)

ϕ(i)q.

If there exists j ∈ I, such that hj → ∞ in Hj, then, since the Hj-action is proper, we

have :

∥cPY
(w.(x0, eW ), (x0, eW ))∥

Fq(PY )
≥

∑
i∈supp(w)

∥c(hix0i , x0i )∥Fi(Pi)
→ +∞,

and if supp(w) → ∞ in I, by Lemma 1.4.11, we have :

∥cPY
(w.(x0, eW ), (x0, eW ))∥

Fq(PY )
≥ ∥cϕ(w, eW )∥q → +∞.

Hence, by Proposition 1.4.8, we conclude that W acts properly on (Y,PY , Fq(PY )).

1.4.3 Action of a semi-direct product on a space with labelled

partitions

Definition 1.4.13 (compatible action). Let G1, G2 be groups and ρ : G2 → Aut(G1) be

a morphism of groups.

Consider a set X on which G1 and G2. We say that the G2-action is compatible with the

G1-action with respect to ρ if, for g1 ∈ G1, g2 ∈ G2, we have, for all x ∈ X :

g2g1g
−1
2 x = ρ(g2)(g1)x.
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Example 1.4.14. If ρ : G2 → Aut(G1) is a morphism, then the action ρ of G2 on G1 is

compatible with the action of G1 on itself by translation with respect to ρ.

Theorem 3.

Let (X1,P1, F1(P1)),(X2,P2, F2(P2)) be spaces with labelled partitions and G1, G2 be topo-

logical groups acting continuously by automorphisms on, respectively,

(X1,P1, F1(P1)) and (X2,P2, F2(P2)) via τ1 and τ2.

Let ρ : G2 → Aut(G1) be a morphism of groups such that (g1, g2) 7→ ρ(g2)g1 is continuous

for the product topology on G1 ×G2.

Assume that there exists a continuous action by automorphisms of G1⋊ρG2 on X1 which

extends the G1 action.

Then the semi-direct product G1⋊ρG2 acts continuously by automorphisms on the natural

structure of labelled partitions (X1 ×X2,P , Fq(P)) on the direct product of X1 ×X2.

Moreover, if, for i = 1, 2, Gi acts properly on (Xi,Pi, Fi(Pi)), then G1⋊ρG2 acts properly

on (X1 ×X2,P , F (P)).

Proof of Theorem 3. Let us denote by τ1 the G1-action on X1, by τ2 the G2-action on X2

and by ρ̃ the G2-action on G1 defined by the restriction on G2 of the G1 ⋊ρ G2-action on

X1. Then ρ̃ is compatible with τ1 with respect to ρ.

We denote by τ the action of G = G1 ⋊ρ G2 on X = X1 ×X2 defined by :

τ(g1, g2)(x1, x2) = (τ1(g1)(ρ̃(g2)x1), τ2(g2)x2).

We show that, via this action, G acts by automorphisms on the direct product of spaces

with labelled partitions (X,P , Fq(P)) where P = P⊕1
1 ∪P⊕2

2 and Fq(P) ≃ F1(P1)⊕F2(P2)

endowed with the q-norm of the direct sum for q ≥ 1.

Let p ∈ P and g = (g1, g2) ∈ G. If p = p⊕1
1 ∈ P⊕1

1 , then, for all x = (x1, x2) ∈ X, we

have :

Φτ(g)(p)(x) = p(τ(g)x)

= p⊕1
1 (τ1(g1)(ρ̃(g2)x1), τ2(g2)x2)

= p1(τ1(g1)(ρ̃(g2)x1))

= p1 ◦ τ1(g1) ◦ ρ̃(g2)(x1)

Φτ(g)(p)(x) = (p1 ◦ τ1(g1) ◦ ρ̃(g2))⊕1(x1, x2),
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and since G1 acts by automorphisms on (X1,P1, F1(P1)) via τ1, we have p1 ◦ τ1(g1) ∈ P1,

and G2 acts by automorphisms on (X1,P1, F1(P1)) via ρ̃, then p1 ◦ τ1(g1) ◦ ρ̃(g2) ∈ P1.

Hence, Φτ(g)(p) = (p1 ◦ τ1(g1) ◦ ρ̃(g2))⊕1 belongs to P .

For p = p⊕2
2 ∈ P⊕2

2 , we have Φτ(g)(p) = (p2 ◦ τ2(g2))⊕2 which belongs to P since G2 acts

by automorphisms on (X2,P2, F2(P2)) via τ2.

Then, for all g ∈ G and all p ∈ P ,

Φτ(g)(p) = p ◦ τ(g) ∈ P .

Let us fix some notations. We denote, for g1 ∈ G1, g2 ∈ G2 :

- Φ
(1)

τ1(g1)
: P1 → P1 the map Φ

(1)

τ1(g1)
(p1) = p1 ◦ τ1(g1) ;

- Φ
(ρ̃)

ρ̃(g2)
: P1 → P1 the map Φ

(ρ̃)

ρ̃(g2)
(p1) = p1 ◦ ρ̃(g2) ;

- Φ
(2)

τ2(g2)
: P2 → P2 the map Φ

(2)

τ2(g2)
(p2) = p2 ◦ τ2(g2).

Let ξ be in F (P) and g = (g1, g2) ∈ G. We have, for all p1 ∈ P1 and all p2 ∈ P2 :

ξ ◦ Φτ(g)(p
⊕1
1 ) = (ξ1 ◦ Φ

(ρ̃)

ρ̃(g2)
◦ Φ(1)

τ1(g1)
)⊕1(p⊕1

1 ),

and

ξ ◦ Φτ(g)(p
⊕2
2 ) = (ξ1 ◦ Φ

(2)

τ2(g2)
)⊕2(p⊕2

2 ).

Hence, ξ ◦ Φτ(g) = (ξ1 ◦ Φ
(ρ̃)

ρ̃(g2)
◦ Φ(1)

τ1(g1)
)⊕1 + (ξ2 ◦ Φ

(2)

τ2(g2)
)⊕2 and we have :

∥ξ ◦ Φτ(g)∥qNq
= ∥ξ1 ◦ Φ

(ρ̃)

ρ̃(g2)
◦ Φ(1)

τ1(g1)
∥q

F1(P1)
+ ∥ξ2 ◦ Φ

(2)

τ2(g2)
∥q

F2(P2)

= ∥ξ1∥qF1(P1)
+ ∥ξ2∥|qF2(P2)

∥ξ ◦ Φτ(g)∥Nq = ∥ξ∥Nq

It follows that G1 ⋊ρ G2 acts by automorphisms on the space with labelled partitions

(X1 ×X2,P, Fq(P)).

It remains to check this action by automorphisms is continuous, i.e. for all x ∈ X,

g 7→ τ(g)x is continuous.

As a set G1⋊ρG2 is simply G1×G2 and since (g1, g2) 7→ ρ(g2)g1 is continuous, the product

topology on G1 × G2 is compatible with the group structure of G1 ⋊ρ G2 (see [Bou71],

III.18 Proposition 20).

Moreover, τ1, τ2 and ρ̃ are strongly continuous, then, for all (x1, x2) ∈ X, the map

(g1, g2) → (τ(g1)(ρ̃(g2)x1), τ2(g2)x2) is continuous from G1×G2 endowed with the product
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topology to (X, d) where d is the labelled partitions pseudo-metric.

Hence, G1 ⋊ρ G2 acts continuously by automorphisms on (X,P , Fq(P)).

Assume, for i = 1, 2, Gi acts properly on (Xi,Pi, Fi(Pi)) via τi, and we denote by ci the

separation map associated with Pi.

Fix x0 = (x1, x2) ∈ X1 ×X2.

The following egality holds for every g = (g1, g2) ∈ G1 ⋊ρ G2 :

∥c(τ(g)x0, x0)∥qNq
= ∥c1(τ1(g1)(ρ̃(g2)x1), x1)∥qF1(P1)

+ ∥c2(τ2(g2)x2, x2)∥qF2(P2)
.

Since G1 ⋊ρ G2 is endowed with the product topology of G1 and G2, g = (g1, g2) → ∞ in

G1 ⋊ρ G2 if, and only if, g1 → ∞ in G1 or g2 → ∞ in G2. Hence, we have two disjoint

cases :

First case : g1 → ∞ in G1 and g2 belongs to a compact subset K2 of G2.

By continuity of g′2 7→ ∥c(ρ̃(g′2)x1, x1)∥F1(P1)
, there exists C(K2) ≥ 0 such that, for every

g′2 ∈ K2, ∥c(ρ̃(g′2)x1, x1)∥F1(P1)
≤ C(K2), and, hence,

∥c(τ(g1)ρ̃(g2)x1, ρ̃(g2)x1)∥F1(P1)
≤ ∥c(τ1(g1)ρ̃(g2)x1, x1)∥F1(P1)

+ ∥c(ρ̃(g2)x1, x1)∥F1(P1)

≤ ∥c(τ(g1)ρ̃(g2)x1, x1)∥F1(P1)
+ C(K2).

But, since G1 acts properly on (X1,P1, F1(P1)), ∥c(τ(g1)ρ̃(g2)x1, ρ̃(g2)x1)∥F1(P1)
−→
g1→∞

+∞,

and then,

∥c(τ(g1)ρ̃(g2)x1, x1)∥F1(P1)
−→
g1→∞

+∞.

It follows that ∥c(τ(g)x0, x0)∥Nq −→
g1→∞

+∞.

Second case : g2 → ∞ in G2.

We have ∥c2(τ2(g2)x2, x2)∥F2(P2)
−→
g2→∞

+∞ and then ∥c(τ(g)x0, x0)∥Nq → +∞.

Finally, as required, we have

∥c(τ(g)x0, x0)∥Nq −→
g→∞

+∞,

and then, G1 ⋊ρ G2 acts properly by automorphisms on (X,P , Fq(P)).
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1.5 Wreath products and property PLp

Using Theorem 3, we simplify a part of the proof of Th 6.2 in [CSV12] where Cornulier,

Stalder and Valette establish the stability of the Haagerup property by wreath product ;

and we generalize it in the following way : the wreath product of a group with property

PLp by a Haagerup group has property PLp.

Theorem 4.

Let H,G be countable discrete groups, L be a subgroup of G and p > 1, with p /∈ 2Z∖{2}.
We denote by I the quotient G/L and W =

⊕
I H. Assume that G is Haagerup, L is

co-Haagerup in G and H has property PLp.

Then the permutational wreath product H ≀I G = W ⋊G has property PLp.

1.5.1 Permutational wreath product

We first introduce the notion of permutational wreath product :

Definition 1.5.1. Let H,G be countable groups, I be a G-set and W =
⊕

i∈I H. The

permutational wreath product H ≀I G is the group :

H ≀I G := W ⋊ρ G,

where G acts by shift on W via ρ i.e. ρ(g) : (hi)i∈I 7→ (hg−1i)i∈I , for g ∈ G.

When I = G, H ≀G G is simply called wreath product and is denoted H ≀G.

1.5.2 Property PLp for the permutational wreath product

To prove Theorem 4, we need the following structure of space with measured walls

relative to the wreath product built in [CSV12], Theorem 4.2 (see [CSV12] § 6.1 for

examples of co-Haagerup subgroups) :

Definition 1.5.2. Let G be a group and L be subgroup of G. We say that L is co-Haagerup

in G if there exists a proper G-invariant conditionally negative definite kernel on G/L.

Theorem 1.5.3 (Cornulier, Stalder, Valette). Let H,G be countable discrete groups and

let L be a subgroup of G. We denote by I the quotient G/L and W =
⊕

I H.

Suppose that G is Haagerup and that L is co-Haagerup in G.

Then there exists a structure (W × I, µ) of space with measured walls on W × I, with wall
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pseudo-metric denoted by dµ, on which W ⋊G acts by automorphisms and which satisfies,

for any x0 = (w0, i0) ∈ W × I and for all g ∈ G :

dµ((w, g)x0, x0) → +∞ when w ∈ W is such that supp(w) → ∞ in I.

Lemma 1.5.4. Let H,G be countable discrete groups, L be a subgroup of G and q ≥ 1.

We denote by I the quotient G/L and W =
⊕

I H. Suppose that G is Haagerup, L is

co-Haagerup in G and H has property PLq.

Then W and G acts by automorphisms on a space (X,P , F (P)) with labelled partitions

such that :

— the W -action is proper,

— the G-action is compatible with the W -action,

— the Banach space F (P) is isometrically isomorph to a Banach subspace of a Lq

space.

Proof. Consider the W ⋊G-action on the space with measured walls (W × I, µ) given by

Theorem 1.5.3. Then, by Proposition 1.3.17, W ⋊G acts by automorphisms on the space

with labelled partitions (W ×I,Pµ, L
q(Pµ, µ)). Let y0 = (eW , i0) ∈ W ×I. The separation

map cµ associated with Pµ satisfies :

∥cµ((w, g)y0, y0)∥q = dµ((w, g)y0, y0).

Now, consider the structure of space with labelled partitions on H given by its proper

isometric affine action on a space Lq(E, ν). By Proposition 1.4.5, W acts by automor-

phisms on the natural structure of space with labelled partitions (W,PW , Fq(PW )) of the

direct sum of spaces with labelled partitions on H. Moreover, G acts by automorphisms

on (W,PW , Fq(PW )) by shift via its action on I.

We denote X = (W×I)×W and consider the space with labelled partitions (X,P , F (P))

given by the direct product of spaces with labelled partitions (W × I,Pµ, L
q(Pµ, µ)) and

(W,PW , Fq(PW )). Then we have actions by automorphisms τW of W and τG on X given

by, for x = (w1, i, w2) ∈ X, w ∈ W and g ∈ G :

τW (w)x = (ww1, i, ww2) and τG(g)x = (ρ(g)w1, gi, ρ(g)w2).

The action τG is clearly compatible with τW since W ⋊ρ G acts naturally on W and on
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W × I.

The Banach space F (P) is isometrically isomorph to the q-direct sum Lq(Pµ, µ)⊕Fq(PW ),

then F (P) is isometrically isomorph to a Banach subspace of Lq(Pµ, µ)⊕ (
⊕q

I L
q(E, ν)).

It follows that F (P) is isometrically isomorph to a Banach subspace of a Lq space. We

denote x0 = (eW , i0, eW ) ∈ X. We have, for w = (hi)i∈I ∈ W :

∥c(τW (w)x0, x0)∥qF (P)
= ∥cPµ((w, i0), (eW , i0))∥qFµ(Pµ)

+ ∥cPW
(w, eW )∥q

Fq(PW )

= dµ((w, eG)y0, y0) +
∑

i∈supp(w)

∥cPH
(hi, eH)∥qFH (PH )

Hence, W acts properly by automorphisms on (X,P , F (P)) : indeed, w = (hi) → ∞ in

W if, and only if, supp(w) → ∞ in I or there exists j ∈ I such that hj → ∞ in H ; then,

in the first case, by the previous theorem, dµ((w, eG)y0, y0) → +∞ and in the second case,∑
i∈supp(w) ∥cPH

(hi, eH)∥qFH (PH )
≥ ∥cPH

(hj, eH)∥qFH (PH )
→ +∞.

Proof of Theorem 4. By Lemma 1.5.4,W andG act by automorphisms on a space (X,P , F (P))

with labelled partitions such that the W -action is proper, and the G-action is compatible

with the W -action with respect to ρ. Moreover, since G is Haagerup, G acts properly by

automorphisms on a space (Y,P ′, F ′(P ′)) with labelled partitions where F ′(P ′) isometri-

cally isomorph to a Lq space.

Hence, by Theorem 3, H ≀I G = W ⋊ρ G acts properly by automorphisms on a space

(Z,PZ , FZ(PZ)) where FZ(PZ) is isometrically isomorph to F (P)⊕F ′(P ′) endowed with

the q-norm of the direct sum. It follows that FZ(PZ) is isometrically isomorph to a Banach

subspace of a Lq space.

Thus, by Corollary 2, H ≀I G has property PLq.

1.6 Free product of spaces with labelled partitions

In this section, we investigate labelled partitions on the free product of spaces with

labelled partitions, given a notion of free product of non-empty sets introduced by Dreesen

in [Dre11] which generalizes the free product of groups. We will be treating some other

properties of free product of spaces and metric spaces in Section 2.6.2.

Given a set of symbols S, we denote by M(S) the set of words in S i.e. M(S) =

{s1...sn | si ∈ S, n ∈ N}.
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Definition 1.6.1. Let S, S ′ be sets. An alternating word in S and S ′ is a word w1w2...wn ∈
M(S ⊔ S ′) such that, for i = 1, ..., n − 1, either wi ∈ S and wi+1 ∈ S ′, or wi ∈ S ′ and

wi+1 ∈ S.

We denote Alt(S, S ′) the set of all alternating words in S and S ′.

Definition 1.6.2 (Free product of spaces). Let X,Y be non-empty sets and fix x0 ∈ X,

y0 ∈ Y . The free product of X and Y on the basepoints x0, y0 is the set :

X ∗
x0∼y0

Y = Alt(X ∖ {x0}, Y ∖ {y0}).

When there is no ambiguity on the fixed points, we simply denote the free product of X

and Y by X ∗ Y .

We denote by e the empty word of X ∗ Y .

The set X ∗
x0∼y0

Y can be visualized as two copies of X and Y , glued together by

identifying x0 and y0 ; on each point but x0 of the copy of X, glue a copy of Y by

identifying this point with y0 and similarly, on each point but y0 of the first copy of Y ,

glue a copy of X by identifying this point with x0 ; by induction, do the same process on

every new copy of X and Y . Notice that only the first two copies are glued together at

x0 ∼ y0 : this point corresponds to the empty word e in X ∗ Y .

Definition 1.6.3 (Subword relation). Let w,w′ ∈ X ∗ Y . We say that w′ is a (starting)
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subword of w and we denote w′ ≤ w if there exists u ∈ X ∗ Y such that :

w = w′u.

The set of (starting) subwords in X ∗ Y of w is denoted by :

Sub(w) = {w′ | w′ ≤ w},

and we set :

Sub∗(w) = Sub(w)∖ {w}.

Remark 1.6.4. - The relation “being a subword” ≤ is a partial order relation on X ∗ Y
and the empty word e is a minimal element for ≤ in X ∗ Y .

- For w ∈ X ∗Y , Sub(w) is a totally ordered finite subset of X ∗Y whose minimal element

is e and maximal element is w.

1.6.1 Left-coset projections

In this part, X,Y are non-empty sets, x0 ∈ X, y0 ∈ Y are basepoints and X ∗ Y =

X ∗
x0∼y0

Y .

We have the following partition of X ∗ Y :

X ∗ Y = {e} ⊔ EX ⊔ EY ,

where EX is the set of alternating words whose last letter belongs to X ∖ {x0} and EY is

the set of alternating words whose last letter belongs to Y ∖ {y0}.

Definition 1.6.5 (Left-cosets). Let w ∈ X ∗ Y .

— If w ∈ EY , the left-X-coset associated with w is the subset of X ∗ Y :

wX = {w} ∪ {wx ∈ X ∗ Y | x ∈ X ∖ {x0}}.

— If w ∈ EX , the left-Y -coset associated with w is the subset of X ∗ Y :

wY = {w} ∪ {wy ∈ X ∗ Y | y ∈ Y ∖ {y0}}.

Moreover, we also define the left-X-coset associated with e, denoted eX and the
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left-Y -coset associated with e, denoted eY by, respectively :

eX = {words in X ∗ Y of at most one letter in X},

and

eY = {words in X ∗ Y of at most one letter in Y }.

Remark 1.6.6. There is an obvious bijection between the set of left-X-cosets and EY ∪{e}
since for w,w′ ∈ EY , wX = w′X if, and only if, w = w′. Similarly, the set of left-Y -cosets

and EX ∪ {e} are equipotent. Hence, if X and Y are countable the set of left-cosets is

countable.

Definition 1.6.7 (Left-coset projections).

— Let w ∈ EY . The map πwX : X ∗ Y → X defined, for w′ ∈ X ∗ Y , by :

πwX(w
′) =

{
x if w′ = wxu with x ∈ X and u ∈ X ∗ Y,
x0 if w is not a subword of w′.

is called the wX-projection of X ∗ Y on X.

— Let w ∈ EX . The map πwY : X ∗ Y → Y defined, for w′ ∈ X ∗ Y , by :

πwY (w
′) =

{
y if w′ = wyu with y ∈ Y and u ∈ X ∗ Y,
y0 if w is not a subword of w′.

is called the wY -projection of X ∗ Y on Y .

— The map πeX : X ∗ Y → X defined by πeX(e) = x0 and for w′ ∈ X ∗ Y , w′ ̸= e :

πeX(w
′) =

{
x if w′ = xu with x ∈ X and u ∈ X ∗ Y,
x0 if the first letter of w′ belongs to Y ∖ {y0}.

is called the eX-projection of X ∗ Y on X.

— The map πeY : X ∗ Y → Y defined by πeY (e) = y0 and for w′ ∈ X ∗ Y , w′ ̸= e :

πeY (w
′) =

{
y if w′ = yu with y ∈ Y and u ∈ X ∗ Y,
y0 if the first letter of w′ belongs to X ∖ {x0}.

is called the eY -projection of X ∗ Y on Y .
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Example of left-coset projection : in this picture,

πxY (xyx
′y′x′′y′′) = y ; πxY (xy

′) = y′ ; πxY (x
′y) = y0 and πxY (x) = y0.

Remark 1.6.8. For every left-coset wZ, πwZ(e) = z0.

Lemma 1.6.9. Let w′ ∈ X ∗ Y . Then, πwZ(w
′) = z0 for all but finitely many left-cosets

wZ of X ∗ Y where Z stands for X or Y and z0 stands for x0 or y0 as appropriate.

Proof. For w ∈ X ∗Y with w ̸= e, if πwZ(w
′) ̸= z0 then w is a subword of w′. As w′ admits

finitely many subwords, it follows that πwZ(w
′) = z0 for all but finitely many left-cosets

wZ.

Lemma 1.6.10. Let w′, w′′ ∈ X ∗ Y with w′ ̸= w′′. We have :

{w | πwZ(w
′) ̸= πwZ(w

′′)} = {wc} ∪ (Sub∗(w′)△ Sub∗(w′′)),

where wc is the largest common subword of w′ and w′′ i.e. the maximal element of Sub(w′)∩
Sub(w′′) for the order relation ≤.

Proof. Assume w′ ̸= w′′. Consider the following decompositions of w′ and w′′ :

w′ = wcd
′u1...un and w′′ = wcd

′′v1...vm,

where wc is the largest common subword of w′ and w′′ ; and d′, d′′ are the first differing

letters (possibly x0 or y0) after wc i.e. if wc ̸= e, d′ = πwcZ(w
′) and d′′ = πwcZ(w

′′) and if

wc = e, we set d′ = πeZ(w
′), d′′ = πeZ(w

′′) where Z is the common set of the first letters

of w and w′ if they belong to the same set, and Z = X otherwise. As w′ ̸= w′′, we have

d′ ̸= d′′. Notice that, as in the proof of Lemma 1.6.9, if w ∈ X ∗ Y is neither a subword of
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w′ nor w′′, then πwZ(w
′) = z0 = πwZ(w

′′). It follows that :

{w ∈ X ∗ Y | πwZ(w
′) ̸= πwZ(w

′′)} ⊂ Sub(w′) ∪ Sub(w).

If w ̸= wc is a common subword of w′ and w′′, then w ∈ Sub∗(wc) i.e. there exists

z ∈ Z ∖ {z0} and t ∈ X ∗ Y such that wc = wzt. Thus, w′ = wztd′u and w′′ = wztd′′v,

and hence πwZ(w
′) = z = πwZ(w

′′).

The remaining cases are w = wc ; w ∈ Sub(w′) ∖ Sub(w′′) and w ∈ Sub(w′′) ∖ Sub(w′).

We claim that those cases are the only ones for which πwZ(w
′) ̸= πwZ(w

′′). In fact, we can

list all the subwords of w′ and w′′ from their decomposition, and we have :

— for w = wc,

πwZ(w
′) = d′ ̸= d′′ = πwZ(w

′′);

— for w = wcd
′u1...ui, i = 0, ..., n− 1,

πwZ(w
′) = ui+1 ̸= z0 = πwZ(w

′′);

— for w = wcd
′′v1...vi, i = 0, ...,m− 1,

πwZ(w
′) = z0 ̸= vi+1 = πwZ(w

′′),

The previous list corresponds exactly to {wc} ∪ (Sub∗(w′)△ Sub∗(w′′)).

From the previous lemma, we can define a metric on X ∗ Y . This metric counts the

number of left-cosets “between” two words in X ∗ Y :

Definition 1.6.11. We call left-cosets metric on X ∗ Y the metric ρlc defined by, for

w′, w′′ ∈ X ∗ Y :

ρlc(w
′, w′′) = #{w | πwZ(w

′) ̸= πwZ(w
′′)}.

The next proposition says that the ρlc-distance between an alternating word and the

empty-word e is actually the “length” of this word i.e. its number of letter :

Proposition 1.6.12. Let w ∈ X ∗ Y , w ̸= e. Then :

{w′ | πw′Z(w) ̸= πw′Z(e)} = Sub∗(w).

In particular, if w = w1...wn, we have ρlc(w, e) = n.
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Proof. It is an immediate consequence of Lemma 1.6.10.

Remark 1.6.13. As we shall see in Chapter 2, Part 2., there is a natural notion of

metric on X ∗ Y induced by two given metrics on X and Y . In this context, the metric of

left-coset on X ∗ Y is exactly the one induced by the discrete metrics on X and Y .

1.6.2 Natural space with labelled partitions on the free product

In this part, we construct a natural structure of space with labelled partitions on the

free product of two spaces, given structures of space with labelled partitions on each fac-

tors.

Definition 1.6.14. Let (X,PX , FX(PX)) and (Y,PY , FY (PY )) be non-empty spaces with

labelled partitions and x0 ∈ X, y0 ∈ Y be basepoints. Subsequently, Z will stand for X or

Y as appropriate.

Let w ∈ X ∗ Y and wZ the left-Z-coset associated with w (if w = e, it can be either eX

or eY ). We set, for pZ ∈ PZ, the following labelling function on X ∗ Y :

p∗wZ
Z = pZ ◦ πwZ ,

where πwZ is the wZ-projection, and we denote P∗wZ
Z = {p∗wZ

Z | pZ ∈ PZ}.
The set :

PX∗Y =
∪

w∈EY

P∗wX
X ∪

∪
w∈EX

P∗wY
Y ∪ P∗eX

X ∪ P∗eY
Y

is called the natural family of labelling functions of the free product X ∗ Y (associated

with PX and PY ).
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Partition of X ∗ Y induced by a partition of Y via the xY -projection.

Definition 1.6.15. Let (X,PX , FX(PX)) and (Y,PY , FY (PY )) be non-empty countable

spaces with labelled partitions and x0 ∈ X, y0 ∈ Y be basepoints. Subsequently, Z will

stand for X or Y as appropriate.

Let w ∈ X ∗ Y and wZ the left-Z-coset associated with w.

For ξ ∈ FZ(PZ), we denote ξ∗wZ : PX∗Y → K the function :

ξ∗wZ(p) =

ξ(pZ) if p = p∗wZ
Z ∈ P∗wZ

Z

0 otherwise.

Let q ≥ 1. We denote Fq(PX∗Y ) the closure of

Eq(PX∗Y ) :=

{ ∑
wZ left-coset

ξ∗wZ
wZ | ξwZ ∈ FZ(PZ) with ξwZ = 0 for all but finitely many left-cosets wZ

}
,

endowed with the norm ∥.∥Nq defined by, for ξ =
∑

wZ ξ
∗wZ
wZ :

∥ξ∥Nq :=

(∑
wZ

∥ξwZ∥qFZ (PZ )

) 1
q

.

The vector space Fq(PX∗Y ) is called the q-space of functions on PX∗Y of X ∗ Y .

Proposition 1.6.16 (Labelled partitions structure on a free product).

Let (X,PX , FX(PX)) and (Y,PY , FY (PY )) be non-empty countable spaces with labelled
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partitions and x0 ∈ X, y0 ∈ Y be basepoints. Consider X ∗ Y together with its natural

family PX∗Y of labelling functions of the free product.

Let q ≥ 1 and Fq(PX∗Y ) be the q-space of functions on PX∗Y of X ∗ Y . Then, the triple

(X ∗ Y,PX∗Y , Fq(PX∗Y )) is a space with labelled partitions.

Proof. In this proof, Z will stand for X or Y , and z0 for x0 or y0 as appropriate. We

denote by cZ the separation map of Z associated with PZ and by cX∗Y the separation

map associated with PX∗Y .

Let w,w′, w′′ ∈ X ∗ Y . For p∗wZ
Z ∈ P∗wZ

Z , we have :

cX∗Y (w
′, w′′)(p∗wZ

Z ) = pZ(πwZ(w
′))− pZ(πwZ(w

′′)) = cZ(πwZ(w
′), πwZ(w

′′))(pZ).

It follows that cX∗Y (w
′, w′′) =

∑
wZ cZ(πwZ(w

′), πwZ(w
′′))∗wZ which is a finite sum since

πwZ(w
′) = z0 = πwZ(w

′′) for all but finitely many left-cosets by Lemma 1.6.9. Thus,

cX∗Y (w
′, w′′) belongs to Fq(PX∗Y ) and hence, (X ∗ Y,PX∗Y , Fq(PX∗Y )) is a space with

labelled partitions.

Definition 1.6.17. Let (X,PX , FX(PX)) and (Y,PY , FY (PY )) be non-empty countable

spaces with labelled partitions, x0 ∈ X, y0 ∈ Y be basepoints and let q ≥ 1. Consider

X ∗ Y together with its natural family PX∗Y of labelling functions on the free product and

let Fq(PX∗Y ) be the q-space of functions on PX∗Y of X ∗ Y .

The triple (X ∗ Y,PX∗Y , Fq(PX∗Y )) is called the natural space with labelled partitions on

the free product X ∗ Y .

1.6.3 Action on a free product of spaces with labelled partitions

1. Natural action on a free product of spaces

Let G,H be groups and X,Y be non empty sets with basepoints x0 and y0. Assume

G acts on X via αG and H acts on Y via αH .

We want to define an action of the free product of groups G ∗H on the free products

of spaces X ∗ Y . First, we extend the actions αG and αH on X ∗ Y in the following way :

In all the definitions of this part, we will observe the following rule : “if a x0 or a y0

appears at the beginning of a word of X ∗ Y , consider there is no letter at this place.”

60



Definition 1.6.18.

We define the map α∗
G : G→ Bij(X ∗ Y ) by, for g ∈ G and w = w1...wn ∈ X ∗ Y :

1) if w1 ∈ Y ∖ {y0},
α∗
G(g)w = (αG(g)x0)w1...wn;

2) if w1 ∈ X ∖ {x0},
α∗
G(g)w = (αG(g)w1)w2...wn;

3) if w = e,

α∗
G(g)e = αG(g)x0,

where αG(g)x0 is viewed as a word of at most one letter in X ∗ Y .

We define the map α∗
H : H → Bij(X ∗ Y ) by, for h ∈ H and w = w1...wn ∈ X ∗ Y :

1) if w1 ∈ X ∖ {x0},
α∗
H(h)w = (αH(h)y0)w1...wn;

2) if w1 ∈ Y ∖ {y0},
α∗
H(h)w = (αH(h)w1)w2...wn;

3) if w = e,

α∗
H(h)e = αH(h)y0,

where αH(h)y0 is viewed as a word of at most one letter in X ∗ Y .

The maps α∗
G and α∗

H are called the free extension of, respectively, αG and αH on X ∗ Y .

Proposition 1.6.19. The free extensions α∗
G and α∗

H are actions of, respectively, G and

H on X ∗ Y .

Proof. For w = w1...wn ∈ X ∗ Y , we clearly have α∗
G(eG)w = w and, for g1, g2 ∈ G :

— if w1 ∈ X ∖ {x0},

α∗
G(g1)(α

∗
G(g2)w) = α∗

G(g1)((αG(g2)w1)w2...wn) = (αG(g1g2)w1)w2...wn = α∗
G(g1g2)w;

— if w1 ∈ Y ∖ {y0},

α∗
G(g1)(α

∗
G(g2)w) = α∗

G(g1)((αG(g2)x0)w1...wn) = (αG(g1g2)x0)w1...wn = α∗
G(g1g2)w;

— if w = e,

α∗
G(g1)(α

∗
G(g2)e) = α∗

G(g1)((αG(g2)x0) = αG(g1g2)x0 = α∗
G(g1g2)e.

61



It follows that α∗
G is an action of G on X ∗ Y . Similar arguments hold for α∗

H .

Lemma 1.6.20. Let G1, G2 be groups and E be a set. Assume there exists actions α1, α2

of, respectively, G1 and G2 on E. Then the map α : G1 ∗ G2 → Bij(E) such that, for

γ = γ1...γn ∈ G1 ∗G2 and ε ∈ E :

α(γ)ε := α1,2(γ1) ◦ α1,2(γ2) ◦ ... ◦ α1,2(γn)(ε),

defines an action of G1 ∗G2 on E where α1,2 stands for α1 or α2 as appropriate.

Proof. Let Γ = G1 ∗G2 and eΓ be the empty word of Γ.

We have, for ε ∈ E, α(eΓ)ε = idE(ε) = ε and, for γ = γ1...γn, γ
′ = γ′1...γ

′
m ∈ Γ :

α(γ)(α(γ′)ε) = α(γ)(α1,2(γ
′
1) ◦ ... ◦ α1,2(γ

′
m)(ε)),

= α1,2(γ1) ◦ ... ◦ α1,2(γn) ◦ α1,2(γ
′
1) ◦ ... ◦ α1,2(γ

′
m)(ε),

α(γ)(α(γ′)ε) = α(γγ′)(ε).

Hence, α is an action of Γ on E.

Definition 1.6.21. We denote by α∗ the action of G∗H on X ∗Y given by Lemma 1.6.20

from the free extension actions α∗
G and α∗

H and we call α∗ the natural action of G ∗H on

X ∗ Y (associated with αG and αH).

Remark 1.6.22. The terminology “natural” comes from the fact that if αG and αH are

respectively the actions of G and H by left-translation on themselves, then α∗ is the action

of G ∗H by translation on itself.

Lemma 1.6.23. Let Z be X or Y as appropriate. We have :

— for g ∈ G and wZ a left-coset,

πwZ ◦ α∗
G(g) =

πα∗
G(g−1)wZ if wZ ̸= eX,

αG(g) ◦ πeX if wZ = eX.

— for h ∈ H and wZ a left-coset,

πwZ ◦ α∗
H(h) =

πα∗
H(h−1)wZ if wZ ̸= eY,

αH(h) ◦ πeY if wZ = eY.
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Proof. Let g ∈ G.

First case : w ̸= e. Let w′ ∈ X ∗ Y . Notice that w ∈ Sub(α∗
G(g)w

′) if, and only if,

α∗
G(g)w

′ = wzu with z ∈ Z (possibly z0) and u ∈ X ∗ Y (u = e if z = z0). Then we have,

w ∈ Sub(α∗
G(g)w

′) if, and only if,

w′ = α∗
G(g

−1)(wzu) = α∗
G(g

−1)(w)zu since w ̸= e.

Hence, for all w′ ∈ X ∗ Y , πwZ ◦ α∗
G(g)(w

′) = πα∗
G(g−1)wZ(w

′).

Second case : wZ = eY . Notice that (α∗
G(g

−1)e)Y = (αG(g
−1)x0)Y if αG(g

−1)x0 ̸= x0

and (α∗
G(g

−1)e)Y = eY if αG(g
−1)x0 = x0. Let w

′ ∈ X ∗ Y .

If w′ = e, πeY ◦ α∗
G(g)(w

′) = y0 = πα∗
G(g−1)eY (w

′).

If w′ = yu with y ∈ Y ∖ {y0}, u ∈ X ∗ Y , then :

πα∗
G(g−1)eY (w

′) =

y0 if αG(g
−1)(x0) ̸= x0,

y if αG(g
−1)(x0) = x0.

Now, we have α∗
G(g)w

′ = αG(g)(x0)yu, then :

πeY ◦ α∗
G(g)(w

′) =

y0 if αG(g)(x0) ̸= x0,

y if αG(g)(x0) = x0.

And if w′ = xu with x ∈ X ∖ {y0}, u = u1...un ∈ X ∗ Y with u1 ∈ Y (if u = e we set by

convention u1 = y0), then :

πα∗
G(g−1)eY (w

′) =

y0 if αG(g
−1)(x0) ̸= x,

u1 if αG(g
−1)(x0) = x.

And we have α∗
G(g)w

′ = αG(g)(x)u, then :

πeY ◦ α∗
G(g)(w

′) =

y0 if αG(g)(x) ̸= x0,

u1 if αG(g)(x) = x0.

It follows that in this case, for every w′ ∈ X ∗ Y , πeY ◦ α∗
G(g)(w

′) = πα∗
G(g−1)eY (w

′).

Third case : wZ = eX.
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If w′ = e, πeX ◦ α∗
G(g)(w

′) = αG(g)x0 = αG(g) ◦ πeX(w′).

If w′ = yu with y ∈ Y ∖ {y0}, u ∈ X ∗ Y , we have :

πeX ◦ α∗
G(g)(w

′) = αG(g)x0 = αG(g) ◦ πeX(w′).

And if w′ = xu with x ∈ X ∖ {x0}, u ∈ X ∗ Y , we have :

πeX ◦ α∗
G(g)(w

′) = αG(g)x = αG(g) ◦ πeX(w′).

Then, for every w′ ∈ X ∗ Y , πeX ◦ α∗
G(g)(w

′) = αG(g) ◦ πeX(w′).

This ends the proof of the first statement, and by permuting the role of G and H, and

X and Y in the previous arguments, the second statement holds as well.

Proposition 1.6.24. Let γ ∈ G ∗ H. Set Z = X or Y and K = G or H in such a

way that K acts on Z. Then, for every left-coset wZ, there exists kw,γ ∈ K and a unique

γw,γ ∈ G ∗H such that :

πwZ ◦ α∗(γ) = αK(kw,γ) ◦ πα∗(γw,γ)wZ .

Moreover, the map : wZ 7→ α∗(γw,γ)wZ is a bijection on the set of left-cosets.

Proof. Let γ = γ1...γn.

We prove the first statement by induction on the word length l of the subword γ(l) = γ1...γl

of γ. By Lemma 1.6.20, the case l = 1 is true.

Let 1 ≤ l < n and assume that for every left-coset wZ, there exists kw,γ(l) ∈ K and a

unique γw,γ(l) ∈ G ∗H such that πwZ ◦ α∗(γ(l)) = αK(kw,γ(l)) ◦ πα∗(γw,γ(l)
)wZ .

We can assume, up to permute G and H and X and Y , that γl ∈ H ∖ {eH} ; it follows
that γl+1 ∈ G∖ {eG}. Let wZ be a left-coset.

If wZ = wX is a left-X-coset, then, kw,γ(l) ∈ G and :

πwX ◦ α∗(γ(l+1)) = πwX ◦ α∗(γ(l)) ◦ α∗
G(γl+1) = αG(kw,γ(l)) ◦ πα∗(γw,γ(l)

)wX ◦ α∗
G(γl+1).

But, by Lemma 1.6.20 :

πα∗(γw,γ(l)
)wX ◦ α∗

G(γl+1) =


πα∗

G(γ−1
l+1)α

∗(γw,γ(l)
)wX if α∗(γw,γ(l))wX ̸= eX,

αG(γl+1) ◦ πeX if α∗(γw,γ(l))wX = eX.
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and hence,

πwX ◦ α∗(γ(l+1)) =


αG(kw,γ(l)) ◦ πα∗(γ−1

l+1γw,γ(l)
)wX if α∗(γw,γ(l))wX ̸= eX,

αG(kw,γ(l)γl+1) ◦ πeX if α∗(γw,γ(l))wX = eX.

And, If wZ = wY is a left-Y -coset, then, kw,γ(l) ∈ H and :

πwY ◦ α∗(γ(l+1)) = πwY ◦ α∗(γ(l)) ◦ α∗
G(γl+1) = αH(kw,γ(l)) ◦ πα∗(γw,γ(l)

)wY ◦ α∗
G(γl+1).

Again, by Lemma 1.6.20, we have :

πα∗(γw,γ(l)
)wY ◦ α∗

G(γl+1) = πα∗
G(γ−1

l+1)α
∗(γw,γ(l)

)wX ,

since α∗(γw,γ(l))wY ̸= eX; and hence,

πwY ◦ α∗(γ(l+1)) = αH(kw,γ(l)) ◦ πα∗(γ−1
l+1γw,γ(l)

)wX .

As a conclusion, we have :

1) for wZ = wX with α∗(γw,γ(l))w ̸= e,

kw,γ(l+1)
= kw,γ(l) and γw,γ(l+1)

= γ−1
l+1γw,γ(l) ,

2) for wZ = wX with α∗(γw,γ(l))w = e,

kw,γ(l+1)
= kw,γ(l)γl+1 and γw,γ(l+1)

= γw,γ(l) ,

3) for wZ = wY ,

kw,γ(l+1)
= kw,γ(l) and γw,γ(l+1)

= γ−1
l+1γw,γ(l) .

In each case, γw,γ(l+1)
is unique by uniqueness of γw,γ(l) . This ends the proof by induction.

Let us show that wZ 7→ α∗(γw,γ)wZ is a bijection on the set of left-cosets. More

precisely, we show that ϕγ,X : wX 7→ α∗(γw,γ)wX is a bijection on the set of left-X-cosets

and that ϕγ,Y : wY 7→ α∗(γw,γ)wY is a bijection on the set of left-Y -cosets. First, remark

that two left-cosets wZ and w′Z ′ are equal if, and only if Z = Z ′ and w = w′.

We proceed again by induction on the word length l of the subword γ(l) = γ1...γl of γ.
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For l = 1, if γ1 ∈ G, notice that for w ∈ EY , α
∗(γ−1

1 )w ̸= e ̸= α∗(γ1)w and hence :

ϕγ1,X(wX) =

α
∗(γ−1

1 )wX if wX ̸= eX,

eX if wX = eX.

clearly defines a bijection on the set of left-X-cosets. And if γ1 ∈ H, we have, for all wX,

ϕγ1,X(wX) = α∗(γ−1
1 )wX which again clearly defines a bijection.

Let 1 ≤ l < n and assume ϕγ(l),X is a bijection on left-X-cosets. We assume, up to permute

G and H, that γl+1 ∈ G∖ {eG}. We have, using 1) and 2) :

ϕγ(l+1),X(wX) =

α
∗(γ−1

l+1γw,γ(l))wX if α∗(γw,γ(l))wX ̸= eX,

eX if α∗(γw,γ(l))wX = eX.

which is a bijection, since wX 7→ α∗(γw,γ(l))wX is a bijection. This ends the induction

and it follows that ϕγ,X is a bijection on the set of left-X-cosets. By a similar induction,

we conclude that ϕγ,Y is a bijection on left-Y -cosets.

2. Action by automorphisms on a free product of spaces with labelled parti-

tions

Proposition 1.6.25.

Let (X,PX , FX(PX)) and (Y,PY , FY (PY )) be non-empty countable spaces with labelled

partitions and x0 ∈ X, y0 ∈ Y be basepoints. Let G and H be discrete countable groups

acting by automorphisms on (X,PX , FX(PX)) and (Y,PY , FY (PY )) respectively.

Let q ≥ 1. Then G∗H acts by automorphisms on the natural space with labelled partitions

on the free product (X ∗ Y,PX∗Y , Fq(PX∗Y )) via the natural action of G ∗H on X ∗ Y .

Proof. Subsequently, Z will stand for X or Y , z0 for x0 or y0 and K for G or H as

appropriate.

We Denote :

— τG the G-action of G on X and for g ∈ G, p ∈ PX , ΦτG(g)(p) := p ◦ τG(g) ;
— τH the H-action of H on Y and for h ∈ H, p ∈ PY , ΦτH(h)(p) := p ◦ τH(h) ;
— τ ∗ the the natural action of G ∗H on X ∗ Y and for γ ∈ Γ, p ∈ PX∗Y , Φτ∗(γ)(p) :=

p ◦ τ ∗(γ).
Let p ∈ PX∗Y and γ = γ1...γn ∈ G ∗H. Then there exists pZ ∈ PZ and a left-coset wZ

such that p = p∗wZ
Z , and we have Φτ∗(γ)(p

∗wZ
Z ) = pZ ◦ πwZ ◦ τ ∗(γ). Hence, by Proposition
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1.6.24, there exists kw ∈ K and γw ∈ G ∗H such that :

Φτ∗(γ)(p
∗wZ
Z ) = pZ ◦ τK(kw) ◦ πτ∗(γw)wZ = (pZ ◦ τK(kw))∗τ

∗(γw)wZ .

It follows that Φτ∗(γ)(p
∗wZ
Z ) belongs to PX∗Y since pZ ◦ τK(kw) ∈ PZ .

For ξ =
∑

wZ ξ
∗wZ
wZ ∈ Eq(PX∗Y ), we have :

ξ ◦ Φτ∗(γ)(p) = ξ((pZ ◦ τK(kw))∗τ
∗(γw)wZ),

= ξτ∗(γw)wZ(pZ ◦ τK(kw)),

ξ ◦ Φτ∗(γ)(p) = (ξτ∗(γw)wZ ◦ ΦτK(kw))
∗wZ(p).

Thus,

ξ ◦ Φτ∗(γ) =
∑
wZ

(ξτ∗(γw)wZ ◦ ΦτK(kw))
∗wZ ,

and then, by making the substitution wZ = τ ∗(γw)wZ which is bijective by Proposition

1.6.24, we have :

ξ ◦ Φτ∗(γ) =
∑
wZ

(ξwZ ◦ ΦτK(kw))
∗τ∗(γ−1

w )wZ ∈ Fq(PX∗Y ),

since ξwZ = 0 for all but finitely many wZ.

By completeness of Fq(PX∗Y ), for all ξ ∈ Fq(PX∗Y ), ξ ◦ Φτ∗(γ) ∈ Fq(PX∗Y ).

Moreover, for ξ =
∑

wZ ξ
∗wZ
wZ ∈ Eq(PX∗Y ), we have :

∥ξ ◦ Φτ∗(γ)∥qNq
=
∑

wZ ∥ξwZ ◦ ΦτK(kw)∥qFZ (PZ )

=
∑

wZ ∥ξwZ∥qFZ (PZ )
,

∥ξ ◦ Φτ∗(γ)∥qNq
= ∥ξ∥qNq

,

since, for all wZ, ∥ξwZ ◦ ΦτK(kw)∥FZ (PZ )
= ∥ξwZ∥FZ (PZ )

.

Thus, by density of Eq(PX∗Y ) in Fq(PX∗Y ), for all ξ ∈ Fq(PX∗Y ), ∥ξ ◦Φτ∗(γ)∥Nq = ∥ξ∥Nq .

It follows that G ∗H acts by automorphisms on (X ∗ Y,PX∗Y , Fq(PX∗Y )).

In the free product X ∗ Y where X and Y are countable, there is two ways of leaving

finite sets for a word w = w1...wn ∈ X ∗ Y :
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— leaving finite sets in a particular left-coset i.e. there exists j such that wj leaves

every finite set in Z ;

— the number of letters n of w is going to infinity i.e. ρlc(w, e) → +∞.

Even if G,H acts properly by automorphisms on their respective spaces with labelled

partitions, the action of G ∗ H on the natural space with labelled partitions of the free

product need not be proper since those hypothesis only implies the properness for words

that leave every finite set in some given left-cosets. We have to add another structure of

labelled partitions on which G ∗ H acts that ensures the properness of the action when

ρlc(w, e) → +∞. That is the point of the following definition :

Definition 1.6.26. Let q ≥ 1, X, Y be non-empty countable sets, x0, y0 be basepoints

and (X,∆X , ℓ
q(∆X)),(Y,∆Y , ℓ

q(∆Y )) be the q-naive spaces with labelled partitions on,

respectively, X and Y .

We denote by (X ∗ Y,∆X∗Y , Fq(∆X∗Y )) the natural space with labelled partitions on the

free product of (X,∆X , ℓ
q(∆X)) and (Y,∆Y , ℓ

q(∆Y )).

Lemma 1.6.27. Let q ≥ 1, X, Y be non-empty countable sets, x0, y0 be basepoints and

(X,∆X , ℓ
q(∆X)),(Y,∆Y , ℓ

q(∆Y )) be the q-naive spaces with labelled partitions on, respec-

tively, X and Y . Let (X ∗Y,∆X∗Y , Fq(∆X∗Y )) be the natural space with labelled partitions

on the free product of X and Y . Then,

∥c∆X∗Y (w, e)∥Nq −→
ρlc(w,e)→+∞

+∞,

where c∆X∗Y is the separation map on X ∗ Y associated with ∆X∗Y .

Proof. Let w ∈ X ∗ Y . By Proposition 1.6.12 we have {w′ | πw′Z(w) ̸= z0} = Sub∗(w),

and then :

∥c∆X∗Y (w, e)∥Nq
=
∑
w′Z

∑
z∈Z

|c∆X∗Y (w, e)(∆
∗w′Z
z )|q

=
∑

w′∈Sub∗(w)

∑
z∈Z

1

2
|δz(πw′Z(w))− δz(z0)|q

∥c∆X∗Y (w, e)∥Nq
= #Sub∗(w) = ρlc(w, e).

It follows that if ρlc(w, e) → +∞, then

∥c∆X∗Y (w, e)∥Nq
→ +∞.
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Theorem 5.

Let (X,PX , FX(PX)) and (Y,PY , FY (PY )) be non-empty countable spaces with labelled

partitions and x0 ∈ X, y0 ∈ Y be basepoints. Let G and H be discrete countable groups

acting (resp. acting properly) by automorphisms on (X,PX , FX(PX)) and (Y,PY , FY (PY ))

respectively such that no element of G fixes x0 and no element of H fixes y0.

Let q ≥ 1. Then there exists a structure of space with labelled partitions (M,PM , F (PM))

on which G ∗H acts (resp. acts properly) by automorphisms.

More precisely, (M,PM , F (PM)) is the natural space with labelled partitions on the direct

product M = (X ∗ Y )× (G ∗H) where :

— on X∗Y , we consider the natural space with labelled partitions (X∗Y,PX∗Y , Fq(PX∗Y ))

on the free product of (X,PX , FX(PX)) and (Y,PY , FY (PY )) ;

— on G∗H, we consider the natural space with labelled partitions (G∗H,∆G∗H , Fq(∆G∗H))

on the free product of the q-naive spaces with labelled partitions (G,∆G, ℓ
q(∆G)),

(H,∆H , ℓ
q(∆H)) on, respectively, G and H.

Proof of Theorem 5. By Proposition 1.6.25, G ∗H acts by automorphisms on both (X ∗
Y,PX∗Y , Fq(PX∗Y )) and (G ∗H,∆G∗H , Fq(∆G∗H)). We set M = (X ∗Y )× (G ∗H) and we

consider the natural space with labelled partitions (M,PM , Fq(PM)) on the direct product

where :

P = P⊕1
X∗Y ∪∆⊕2

G∗H ,

and

Fq(P) ≃ Fq(PX∗Y )⊕ ℓq(∆G∗H).

Then, by Proposition 1.4.5, (G∗H)×(G∗H) acts by automorphisms on (M,PM , Fq(PM))

via the action (γ, γ′).(w, γ′′) = (τ ∗(γ)w, γ′γ′′). Hence, G ∗ H acts by automorphisms on

(M,PM , Fq(PM)), where G∗H is viewed as the diagonal subgroup {(γ, γ) | γ ∈ G∗H} <
(G ∗H)× (G ∗H).

It remains to prove that the G ∗ H-action on (M,PM , Fq(PM)) is proper. Let γ =

γ1...γn ∈ G ∗H. Notice that, since x0 is not fixed by any element in G and y0 is not fixed
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by any element of H, τ ∗(γ)e = (τK(γ1)z0)...(τK(γn)z0) and then :

πwZ(τ
∗(γ)e) =

τK(γi+1)z0 if wZ = (τK(γ1)z0)...(τK(γi)z0)Z, i = 0, ..., n− 1,

z0 otherwise.

Hence, we have :

∥cPM
(γ.(e, eΓ), (e, eΓ))∥qFq(PM )

= ∥cPX∗Y (τ
∗(γ)e, e)∥q

Fq(PX∗Y )
+ ∥c∆G∗H (γ, eΓ)∥qq

=
n∑

i=1

∥cPZ
(τK(γi)z0, z0)∥qFZ (PZ )

+
n∑

i=1

∥c∆K
(γi, eK)∥qq.

If there exists j such that γj leaves every finite set in K, then, since the K-action on

Z is proper, we have :

∥cPM
(γ.(e, eΓ), (e, eΓ))∥Fq(PM )

≥ ∥cPZ
(τK(γj)z0, z0)∥FZ (PZ )

→ +∞,

and if n = ρlc(γ, e) → +∞, by Lemma 1.6.27, we have :

∥cPM
(γ.(e, eΓ), (e, eΓ))∥qFq(PM )

≥
n∑

i=1

∥c∆K
(γi, eK)∥qq = n→ +∞.

Hence, G ∗H acts properly on (M,PM , Fq(PM)).

Corollary 6.

Let p ≥ 1 with p /∈ 2Z∖{2} and G,H be discrete countable groups. G and H have property

PLp if, and only if, G ∗H has property PLp.

Proof of Corollary 6. Assume that G,H have property Plp. By Corollary 2, there exists

structures of spaces with labelled partitions (G,PG, FG(PG)) and (H,PH , FH(PH)) on

which G and H respectively, act properly by automorphisms by left-translation on itself.

Moreover FG(PG) is isometrically isomorph to a closed subspace of a Lp space and so does

FH(PH). Remark that no element of G fixes the identity element eG of G and no element

of H fixes eH in H. Thus we can apply Theorem 5 to G ↷ (G,PG, FG(PG)) and H ↷
(H,PH , FH(PH)) and then there exists a space with labelled partitions (M,PM , FM(PM))

on which G ∗H acts properly by automorphisms where

FM(PM) ≃
⊕

p

countable

FG(PG)⊕
⊕

p

countable

FH(PH)⊕ Fp(∆G∗H).
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Hence FM(PM) is isometrically isomorph to a closed subspace of a Lp space by Proposition

1.2.12. By Corollary 2, it follows that G ∗H has property PLp.

The necessary condition is clear since property PLp is stable by taking closed subgroups

and G < G ∗H and H < G ∗H.
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Chapter 2

0n δ-median spaces

2.1 Introduction

A median algebra is a set X together with a map µ : X ×X ×X → X which satisfies

the following conditions :

1. µ(x, x, y) = x,

2. µ(x, y, z) = µ(y, z, x) = µ(x, z, y)

3. µ(µ(x, y, z), u, v) = µ(x, µ(y, u, v), µ(z, u, v)).

In the particular setting of metric spaces, a median space is a geodesic metric space

for which, given any triple a, b, c, there exists a unique element m called median point

between any two point in that triple. A point x is between a and b if d(a, x) + d(x, b) =

d(a, b). There is a significant litterature about median algebras and median spaces (see

for instance [BH83], [Bas01],[Rol98],[BC08],[Bow13b]...). Recent works have been made

in generalizing median spaces : Bowditch introduced in [Bow13a] the notion of coarse

median geodesic metric spaces ; such spaces satisfy the axioms of median algebra up to

bounded distance. In [CDH10], Chatterji, Drutu and Haglund showed the existence of a

strong connection between median spaces and space with measured walls. In this latter

paper, they introduced a “quasification” of median spaces, namely the δ-median spaces

which on one hand generalizes median spaces, and on the other hand, contains the Gromov

hyperbolic spaces as we shall see in Section 2.4. In the following review, we study a strong

version of the quasi-median definition. Originally, a (weak) δ-median space, is a metric

space which is Lδ, i.e. given any triple, there exists some points called δ-median points

which are between, up to δ, any two points in that triple (see Definition 2.2.1) and such that

the diameter of δ-median points is bounded uniformly over triples in this space. Elder in
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[Eld04] showed that finitely generated groups satisfying the Lδ property are almost convex

and have a sub-cubic Dehn function. Here, we consider a stronger definition where the Lδ

condition is replaced by the so called L′
δ condition, namely, for any triple, there exists a

δ-thin triangle in the sense of Definition 2.3.3. In this study of quasi-median spaces, we

discuss the axiom of the δ-median definition and establish some basic properties of this

structure. Then we show that Gromov hyperbolic spaces are quasi-median and we build

an explicit quasi-median space which is neither hyperbolic nor median. Finally we explore

the stability of the quasi-median condition by direct product and free product.

2.2 Preliminaries

In this section, we record for further use a few definitions and basic properties about

metric spaces.

Let (X, d) be a metric space.

2.2.1 Thick intervals

Definition 2.2.1. Let a, b ∈ X and α ⩾ 0.

We call α-interval between a and b the set :

[a, b]α = {x ∈ X | d(a, x) + d(x, b) ⩽ d(a, b) + α} .

Moreover, if x belongs to [a, b]α, we say that x is α-between a and b.

For simplicity, when α = 0, we denote [a, b] := [a, b]0 = {x ∈ X | d(a, x) + d(x, b) = d(a, b)}.

Proposition 2.2.2. Let α, β ⩾ 0 and a, b, c ∈ X. If c ∈ [a, b]α, then [c, b]β ⊂ [a, b]α+β.

In particular, If c ∈ [a, b], then [c, b] ⊂ [a, b].

Proof. Let x ∈ [c, b]β. Then we have :

d(a, x) + d(x, b) ⩽ d(a, c) + d(c, x) + d(x, b) ≤ d(a, b) + α + β.
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Definition 2.2.3. Let α ≥ 0. We say that x and y in X are α-close if d(x, y) ≤ α.

Let Y be a subset of X. The set Vα(Y ) = {x ∈ X | ∃y ∈ Y, x, y are α-close} is called the

α-neighbourhood of Y in X.

Lemma 2.2.4. Let α, β ≥ 0 and a, b ∈ X. We have :

Vβ([a, b]α) ⊂ [a, b]α+2β.

In particular, we have Vα
2
([a, b]) ⊂ [a, b]α.

Proof. Let x ∈ Vβ([a, b]α). Then there exists y ∈ [a, b]α such that d(x, y) ≤ β, and hence :

d(a, x) + d(x, b) ≤ d(a, y) + d(y, b) + 2d(x, y) ≤ d(a, b) + α + 2β.

2.2.2 Geodesics and triangles

We recall here the notion of geodesics in a metric space and we introduce the notion

of triangles in geodesic metric spaces :

Definition 2.2.5. Let (X, d) be a metric space.

— We call geodesic path from a to b a finite sequence (x0, ..., xn) of elements of X

such that, x0 = a, xn = b and

n−1∑
i=0

d(xi, xi+1) = d(a, b).

— We call geodesic arc from a to b in X an isometry γ : [0, d(x, y)] → X such that

γ(0) = x and γ(d(x, y)) = y.

— We say that (X, d) is a geodesic metric space if, for all a, b ∈ X, there exists a

geodesic arc from a to b.

Remark 2.2.6. If (x0, ..., xn) is a geodesic path from a to b with a ̸= b, then (x0, ..., xn−1)

is a geodesic path from a to xn−1 since

d(a, xn−1) ≤
n−2∑
i=0

d(xi, xi+1) = d(a, b)− d(xn−1, b) ≤ d(a, xn−1).

It follows that, for all i ∈ {0, ..., n}, (x0, ..., xi) is a geodesic path from a to xi.
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Lemma 2.2.7. Let (X, d) be a metric space and let a, b, c ∈ X such that (a, b, c) is a

geodesic path from a to c. Assume there exists geodesic arcs γ from a to b and γ′ from b

to c. Then there exists a geodesic arc from a to c.

More precisely, the arc γ′′ defined by, for t ∈ [0, d(a, b)], γ′′(t) = γ(t) and for t ∈
[d(a, b), d(a, c)], γ′′(t) = γ′(t− d(a, b)) is a geodesic arc from a to c.

By using Remark 2.2.6 and an immediate induction on the length of the geodesic path

considered, we obtain the following corollary :

Corollary 2.2.8. Let (X, d) be a metric space and (x0, ..., xn) be a geodesic path from a

to b in X. Assume that, for i = 0, ..., n − 1, there exists a geodesic arc from xi to xi+1.

Then there exists a geodesic arc from a to b.

If γ is a continuous arc from a real interval I to X, we denote γ = Im(γ).

Remark 2.2.9. Assume (X, d) is a geodesic metric space and denote for a, b ∈ X, Γa→b

the set of geodesic arcs from a to b. We have, for all a, b ∈ X,

[a, b] =
∪

γ∈Γa→b

γ.

Definition 2.2.10. Let a, b, c ∈ X and γ, γ′, γ′′ be geodesic arcs from, respectively, a to

b, b to c and c to a. The set

∆(a, b, c) = γ ∪ γ′ ∪ γ′′

is called a geodesic triangle of the triple a, b, c.

Definition 2.2.11. Let (X, d) be a metric space and a, b, c ∈ X. The set

∆f (a, b, c) = [a, b] ∪ [b, c] ∪ [c, a]

is called the full triangle of a, b, c.

2.3 Definitions and first properties

Let (X, d) be a metric space.
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Definition 2.3.1 (δ-median points). Let a, b, c ∈ X and δ ⩾ 0. We denote :

Mδ(a, b, c) = [a, b]δ ∩ [b, c]δ ∩ [c, a]δ.

The elements of the set Mδ(a, b, c) are called δ-median points of the triple a, b, c.

Definition 2.3.2. Let α ⩾ 0, a, b, c ∈ X and ∆f (a, b, c) be the full triangle of a, b, c.

We say that ∆f (a, b, c) is α-thin if there exists x ∈ [a, b], y ∈ [b, c] and z ∈ [c, a]

pairwise α-close.

Such elements x, y, z are called α-inner points of ∆f (a, b, c).

Definition 2.3.3. Let (X, d) be a metric space.

— We say that (X, d) is a Lδ space if, for all a, b, c ∈ X, Mδ(a, b, c) ̸= ∅.
— We say that (X, d) is a L′

δ space if, for all a, b, c ∈ X, the full triangle ∆f (a, b, c)

is δ
2
-thin.

Remark 2.3.4. Let δ ≥ 0 and a, b, c ∈ X. Notice that δ
2
-inner points of the full triangle

∆f (a, b, c) are δ-median points of a, b, c.

In fact, let x ∈ [a, b], y ∈ [b, c] and z ∈ [c, a] be δ
2
-inner points of ∆f (a, b, c). Then, we

have :

d(b, x) + d(x, c) ⩽ d(b, y) + d(y, c) + 2d(x, y) ⩽ d(b, c) + δ,

and, similarly

d(c, x) + d(x, a) ⩽ d(c, a) + δ.

Hence x ∈ [a, b] ∩ [b, c]δ ∩ [c, a]δ and hence x ∈Mδ(a, b, c).

It follows that if (X, d) is a L′
δ space then it is a Lδ space.

Proposition 2.3.5. Let (X, d) be a L′
δ space and α ≥ 0. For every a, b ∈ X, we have :

[a, b]α ⊂ Vα
2
+ 3δ

4
([a, b]).

Proof. Let x ∈ [a, b]α. Since (X, d) is L′
δ, the full triangle ∆f (a, b, x) is δ

2
-thin. Let

a0 ∈ [b, x], b0 ∈ [x, a] and x0 ∈ [a, b] be δ
2
-inner points of ∆f (a, b, x). We have :
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1) d(x, x0) + d(a0, b) ≤ d(x, b) + d(a0, x0),

2) d(x, x0) + d(a0, a) ≤ d(x, a) + d(b0, x0) + d(a0, b0),

1)+ 2) 2d(x, x0) + d(a, b) ≤ d(a, b) + α+ 3δ
2
.

Since x0 belongs to [a, b], it follows that d(x, [a, b]) ≤ α
2
+ 3δ

4
.

Definition 2.3.6. Let δ ⩾ 0. We say that a metric space (X, d) is a δ-median space if :

(δ-Med1) (X, d) is a L′
δ space ;

(δ-Med2) there exists C = C(δ) ⩾ 0 such that, for all a, b, c ∈ X,

diam(Mδ(a, b, c)) ⩽ Cδ.

We say that a metric space X is a quasi-median space if there exists δ ⩾ 0 such that X

is δ-median.

Remark 2.3.7. A 0-median space is a median metric space. In fact, the L′
0 property,

implies that [a, b]∩ [b, c]∩ [c, a] is non empty i.e. there exists a median point for each triple

a, b, c, and the condition (δ-Med2) gives the unicity of the median point for each triple.

Remark 2.3.8.

— If (X, d) is a Lδ space for some δ ≥ 0, then it is Lδ′ for all δ′ ≥ δ since we have,

for all a, b, c ∈ X,

Mδ(a, b, c) ⊂Mδ′(a, b, c).

— If (X, d) is a L′
δ space for some δ ≥ 0, then it is L′

δ′ for all δ′ ≥ δ. In fact, if the

full triangle of a, b, c ∈ X is δ
2
-thin then, clearly, it is δ′

2
-thin for all δ′ ≥ δ.

By the previous remark, the condition (δ-Med1) is satisfied for every δ′ ≥ δ ; the next

result states that the set of δ′-median points of every triple a, b, c stays uniformly close to

the set of δ-median points of a, b, c. We will give a full proof of Theorem 7 in Section 2.5.

Theorem 7.

Let (X, d) be a δ-median space. Then (X, d) is δ′-median for all δ′ ≥ δ.
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2.4 Examples of δ-median spaces

2.4.1 Gromov hyperbolic spaces

For our purpose, we consider one of the several equivalent definition of hyperbolicity

for metric space that Gromov discussed in [Gro87]. We give here a reformulation of the

definition based on tripods given in [BH99] (see Chapter III.H Definition 1.16).

Definition 2.4.1 (Tripod). Let α1, α2, α3 be positive reals. The metric tree T (α1, α2, α3)

with tree vertices v1, v2, v3 of valence one, one vertex O of valence 3 and edges of length

dT (v1, O) = α1, dT (v2, O) = α2 and dT (v3, O) = α3 is called the tripod associated with

α1, α2, α3. The definition is extended to the cases where at least one of αi’s is zero in the

obvious way.

Definition 2.4.2. Let (X, d) be a geodesic metric space.

— Let a ∈ X. The Gromov product of b, c ∈ X with respect to a is the quantity :

(b · c)a =
1

2
(d(b, a) + d(c, a)− d(b, c)).

— Let ∆ = ∆(a, b, c) be a geodesic triangle in X, set α1 = (b · c)a ,α2 = (c · a)b and

α3 = (a · b)c and let T∆ = T (α1, α2, α3) be the tripod associated with α1, α2, α3. We

denote by f∆ the unique map :

f∆ : ∆ → T∆,

such that f∆(a) = v1,f∆(b) = v2, f∆(c) = v3 and the restriction of f∆ to each side

is an isometry.

The points of f−1
∆ (O) are called the internal points of ∆.

Remark 2.4.3. Let ∆(a, b, c) = γa,b∪γb,c∪γc,a be a geodesic triangle in X. The unique

elements a0, b0, c0 such that :
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a0 ∈ γb,c and d(b, a0) = (c · a)b
b0 ∈ γc,a and d(b0, c) = (a · b)c
c0 ∈ γa,b and d(c0, a) = (b · c)a

are exactly the internal points of ∆(a, b, c).

The map f∆ from ∆(a, b, c) to T∆.

Definition 2.4.4. We say that (X, d) is Gromov hyperbolic if there exists δ ≥ 0 such

that for every geodesic triangle ∆ = ∆(a, b, c) and for all t ∈ T∆, x, y ∈ f−1
∆ (t) implies

d(x, y) ≤ δ.

For more concision, in this case, we say that (X, d) is δ-hyperbolic.

A δ-thin geodesic triangle.

Example 2.4.5. - Trees, and more generally R-trees are 0-hyperbolic ;

- for κ < 0, CAT(κ) spaces are δ-hyperbolic for d depending only on κ.
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Proposition 2.4.6. Let (X, d) be a geodesic metric space. If (X, d) is Gromov hyperbolic

then it is a quasi-median space. More precisely, if δ is the hyperbolicity constant of X,

then X is 2δ-median with (2δ-Med2) constant C ≤ 17.

Proof. Assume that X is δ-hyperbolic. Let a, b, c ∈ X, ∆(a, b, c) be a geodesic triangle

in X and a0, b0, c0 be the internal points of ∆(a, b, c). Since a0 belongs to a geodesic arc

from b to c, then a0 belongs to the geodesic interval [b, c] and similarly, b0 ∈ [c, a] and

c0 ∈ [a, b]. As a0, b0, c0 are pairwise δ-close, it follows that a0, b0, c0 are δ-inner points of

the full triangle ∆f (a, b, c) ; and hence, ∆f (a, b, c) is δ-thin. As a consequence, X is L′
2δ.

Let us show that (2δ-Med2) is satisfied. Let a, b, c ∈ X and m ∈M2δ(a, b, c). Since X is

L′
2δ, by Proposition 2.3.5, we have :

m ∈ V 5δ
2
([a, b]) ∩ V 5δ

2
([b, c]) ∩ V 5δ

2
([c, a]).

Thus, there exists m1 ∈ [a, b], m2 ∈ [b, c], m3 ∈ [c, a] such that d(m,mi) ≤ 5δ
2
. As

(a,m1, b), (b,m2, c), (c,m3, a) are geodesic path, by Lemma 2.2.7, there exists a geodesic

triangle ∆(a, b, c) = γ1 ∪ γ2 ∪ γ3 such that mi ∈ γi where γ1, γ2, γ3 are geodesic path

from a to b, from b to c and from c to a respectively. Let a0 ∈ γ2, b0 ∈ γ3, c0 ∈ γ1 be

the internal points of ∆(a, b, c). Notice that there is at most two points among m1,m2,m3

such that their images by f∆ belong to the same edge of T∆. Hence, we can assume, up

to permute a, b and c that f∆(m1) belong to the edge (v1, O) and f∆(m2) belong to the

edge (v2, O). Let m
′
2 be the unique point in f−1

∆ (m2) ∩ γ1. Since the restriction of f∆ to

γ1 is an isometry, we have :

d(m1, c0) + d(c0,m
′
2) = d(m1,m

′
2).

By δ-hyperbolicity, d(m2,m
′
2) ≤ δ and then :

d(m1, c0) ≤ d(m1,m
′
2) ≤ d(m1,m2) + d(m2,m

′
2) ≤ 2× 5δ

2
+ δ = 6δ,

and hence, d(m, c0) ≤ d(m,m1) + d(m1, c0) ≤ 17δ
2
. It follows that

diam(M2δ(a, b, c)) ≤ 17δ.
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2.4.2 A construction of δ-median space

Let H = {z ∈ C | Im(z) > 0} be the Poincaré half-plane model i.e. the geodesic metric

space (H, dH) where, for z = x+ iy, z′ = x′ + iy′ ∈ H,

dH(z, z
′) = arcosh

(
1 +

(x− x′)2 + (y − y′)2

2yy′

)
;

The space (H, dH) is a uniquely geodesic δ-hyperbolic space for δ = ln(3+
√
5

2
). The geodesic

arcs inH are exactly arcs of circles having a diameter contained in the real axis or segments

of lines perpendicular to the real axis.

Figure 1. Figure 2.

Examples of geodesic arcs in (H, dH) A slim triangle in H.
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Let R2 = {(x, y)|x, y ∈ R} be the real plane endowed with the metric induced by the

norm 1 on R2 :

d∥.∥1((x, y), (x
′, y′)) = |x− x′|+ |y − y′|.

The space (R2, d∥.∥1) is a median space and for δ ≥ 0, the (δ-Med2) constant C of

(R2, d∥.∥1) (seen as a δ-median space) is C = 3 (see Remark 2.5.8). Notice that, with this

metric, R2 is not Gromov hyperbolic : the distance between some pairs of internal points

of the geodesic triangle in Figure 4. below, goes to infinity when n→ +∞.

Figure 3. Figure 4.

Geodesic intervals and median point Sequence of non slim triangles.

1. A non-hyperbolic non-median quasi-median space

In this part, from the hyperbolic half-plane and an isometric copy of R2 endowed with

the ℓ1 metric, we give an explicit construction of a non-hyperbolic and non-median quasi-

median space.

Fix a non-negative real number L and consider a geodesic ars γ in H of length L, i.e.

γ : [0, L] → H is an isometry,

To this arc γ, we associate an isometric copy (P , d1) of (R2, d∥.∥1) and we build a metric

space (X, d) as follows :

• Define the identification ∼ by : we glue isometrically the segment [(0, 0), (L, 0)] of
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P = {(t, t′) | t, t′ ∈ R} on γ by identifying, for t ∈ [0, L],

(t, 0) ∼ γ(t).

• Set X = (H ⊔ P)/ ∼ and let π : H ⊔ P → X be the canonical surjection.

• Consider the projection p on the segment [(0, 0), (L, 0)] of P such that, for (t, t′) ∈
P , p(t, t′) = (f(t), 0) ∈ P where f : R→ [0, L] is defined by :

f(t) =


t if t ∈ [0, L],

0 if t < 0,

L if t > L;

and define a map d : X ×X → R+ by, for a, b ∈ X :

— if a = π(z), b = π(z′) with z, z′ ∈ H,

d(a, b) = dH(z, z
′);

— if a = π(s), b = π(s′) with s, s′ ∈ P ,

d(a, b) = d1(s, s
′);

— if a = π(z), b = π(s) (or vice versa) with z ∈ H and s = (t, t′) ∈ P ,

d(a, b) = dH(z, γ(t)) + d1(p(s), s);
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X = (H ⊔ P)/ ∼ for a given geodesic arc γ.

A geodesic triangle in X for the metric d.
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Proposition 2.4.7. The couple (X, d) defined above is a geodesic metric space.

Proof. First, we claim that d define a metric on X. In fact, notice that, for a = π(z),

b = π(s) with z ∈ H and s = (t, t′) ∈ P ,

d(a, b) = dH(z, γ(t)) + d1(p(s), s) = inf
T∈[0,L]

(d(z, γ(T )) + d1((T, 0), s))

by triangular inequality of dH (see the figure above). Moreover, when restricted to each

π(P) or to π(H), d “extends” the metrics of each P or H. Hence, the triangular inequality
for d is satisfied on X and it is clear that the separation axiom is satisfied too from the

definition.

Let us show that (X, d) is a geodesic.

1) Let a = π(z), b = π(z′) with z, z′ ∈ H. Then, there exists a geodesic arc α in H from

z to z′ and the arc α̃ defined by α̃ = π◦α satisfies, for 0 ≤ t, t′ ≤ dH(z, z
′) = d(a, b) :

d(α̃(t), α̃(t′)) = dH(α(t), α(t
′)) = |t− t′|,

is a geodesic arc from a to b in X.

2) Let a = π(s), b = π(s′) with s, s′ ∈ P . Then, there exists a geodesic arc β in P from

s to s′ and the arc β̃ defined by β̃ = π◦β satisfies, for 0 ≤ t, t′ ≤ d1(s, s
′) = d(a, b) :

d(β̃(t), β̃(t′)) = d1(β(t), β(t
′)) = |t− t′|,

is a geodesic arc from a to b in X.

3) Let a = π(z), b = π(s) (or vice versa) with z ∈ H and s = (t, t′) ∈ P . Set

c = π(p(s))(= π(γ(t))) and notice that :

d(a, c) + d(c, b) = dH(z, γ(t)) + d1(p(s), s) = d(a, b),

and hence, c belong to the geodesic interval [a, b]. By 1) and 2), there exists geodesic

arcs in X from a to c and from c to b and then, by Lemma 2.2.8, there exists a

geodesic arc from a to b in X.

It follows that (X, d) is a geodesic metric space.

Notice that π|H is an isometry from H to X and π|P is an isometry from P to X.
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Let δ = max(2L, 2ln(3+
√
5

2
)). There are four generic full triangles in X and notice

that each of those full triangles is δ
2
-thin : in each picture below, the points colored in

sky blue are some δ
2
-inner points of the full triangle of the three elements of X considered.

Triangle 1 Triangle 2

Triangle 3 Triangle 4

Proposition 2.4.8. The space (X, d) is δ-median for δ = max(2L, 2ln(3+
√
5

2
)).
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Proof. Let δ = max(2L, 2ln(3+
√
5

2
)). If ∆f (a, b, c) is a full triangle in X, there is different

three cases (up to permute a, b and c) for the location of the inner points of ∆f (a, b, c) :

First case : a, b, c ∈ π(H) or there exists i ∈ {1, ..., n} such that a, b, c ∈ π(P) (Tri-

angles 1 and 2).

Then the full triangle ∆f (a, b, c) of a, b, c is isometric to a full triangle in H or in P which

is δ
2
-thin as H and P are L′

δ. Hence, ∆f (a, b, c) is δ-thin.

Second case : a, b, c do not pairwise belong to π(P), (Triangles 4).

Then there exists za, zb, zc ∈ H such that :

∆f (π(za), π(zb), π(zc)) ⊂ ∆f (a, b, c).

The full triangle ∆f (π(za), π(zb), π(zc)) is isometric to ∆f (za, zb, zc) which is δ
2
-thin tri-

angle in H. Hence, for any triple z′a ∈ [zb, zc], z
′
b ∈ [zc, za], z

′
b ∈ [za, zb] of

δ
2
-inner points

of ∆f (za, zb, zc), π(z
′
a) ∈ [b, c], π(z′b) ∈ [c, a],π(z′c) ∈ [a, b] are δ

2
-close. It follows that

∆f (a, b, c) is
δ
2
-thin.

Third case : a, b ∈ π(P) and c /∈ π(P), (Triangles 3).

Then, there exists zc ∈ H such that :

∆f (a, b, π(zc)) ⊂ ∆f (a, b, c).

Let sa = (ta, t
′
a), sb = (tb, t

′
b) ∈ P such that a = π(sa), b = π(sb) and consider p(sa) =

(p(ta), 0), p(sb) = (p(tb), 0) in P .

If the signs t′a and t′b are opposite, then [π(p(sa)), π(p(sb))] ⊂ ∆f (a, b, π(zc)) and hence,

π(pi(sa)) ∈ [a, b], π(p(sa)) ∈ [π(zc), a] ⊂ [c, a], and π(p(sb)) ∈ [b, π(zc)] ⊂ [b, c] are L-close,

and hence ∆f (a, b, c) is δ-thin.

If t′a, t
′
b have the same sign, we can assume, without loss of generality that they are

non-negative and we set : t′ = min(t′a, t
′
b) and

s′a = (f(ta), t
′) and s′b = (f(tb), t

′).

We have : d(π(s′a), π(s
′
a)) = |f(ta) − f(tb)| ≤ L ≤ δ

2
and π(s′a) ∈ [c, a], π(s′b) ∈ [b, c] and

π(s′a) ∈ [a, b]. Hence, ∆f (a, b, c) is
δ
2
-thin.
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As a conclusion, (X, d) is L′
δ.

Remark 2.4.9. This construction can be easily generalized by considering a finite col-

lection of pairwise non intersecting geodesic arcs and, on each arc, we glue in the same

way a isometric copy of (R2, d∥.∥1). By similar arguments, the resulting metric space is

quasi-median.

2. A Lδ space which is not L′
δ

Here, by a similar construction using the Poincare half-plan model and an isometric

copy of R2 with the ℓ1-metric, we build a Lδ space which has sequences of full triangles

that do not satisfy the α-thinness condition for any α ≥ 0.

Consider a lines γ in H i.e.

γ : R→ H is an isometry .

We build a geodesic metric space (X, d) as previously : we consider an isometric copy

(P , d1) of (R2, d∥∥1) and we glue the real axis {(t, 0) | t ∈ R} and γ by the following

identification : for t ∈ R,
(t, 0) ∼ γ(t).
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The metric d onX is defined as previously, but we replace the projection p by the canonical

projection of P on its absciss axis :

p(t, t′) = (t, 0).

Using similar arguments as in proof of Proposition 2.4.7, we can see that the space

(X, d) is a geodesic metric space.

X = (H ⊔ P)/ ∼ for a given geodesic line γ.

Proposition 2.4.10. The space (X, d) is Lδ for δ = 2ln(3+
√
5

2
).

Proof. Let a, b, c ∈ X. If either a, b, c ∈ π(P) or if a, b, c do not pairwise belong to π(P),

then, as in proof of Proposition 2.4.8, there exists a δ-thin subtriangle of ∆f (a, b, c) and

hence, ∆f (a, b, c) admits δ-inner points. Thus Mδ(a, b, c) is not empty.
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It remains (up to permute a, b, c) the case where a, b ∈ π(P) and c /∈ π(P). Then there

exists zc ∈ H such that Mδ(a, b, π(zc)) ⊂ Mδ(a, b, c). Let sa = (ta, t
′
a), sb = (tb, t

′
b) ∈ P

such that a = π(sa), b = π(sb) and consider p(sa) = (ta, 0), p(sb) = (tb, 0) in P . By the

identification ∼, we have π(p(sa)) = π(γ(ta)), π(p(sb)) = π(γ(tb)) and we consider the

geodesic triangle ∆ = ∆(γ(ta), γ(tb), zc) in H. As H is δ
2
-hyperbolic, ∆ admits δ

2
-close

internal points xa ∈ [γ(tb), zc] ⊂ [b, c], xb ∈ [γ(ta), zc] ⊂ [a, c] and xc ∈ [γ(ta), γ(tb)] ⊂
[a, b].

If the signs of t′a and t′b are opposite, then we have π(xc) ∈ [π(γ(ta)), π(γ(tb))] ⊂ [a, b].

And hence,

π(xc) ∈ [a, b] ∩ [b, c]δ ∩ [c, a]δ ⊂Mδ(a, b, c).

If t′a, t
′
b have the same sign, we can assume without loss of generality, that t′a, t

′
b are both

non-negative.

We have π(xc) ∈ [π(γ(ta)), π(γ(tb))], then there exists tc ∈ [ta, tb] such that π(xc) =

π((tc, 0)). Set t
′ = min(t′a, t

′
b) and

c′ ∈ π(P) such that c′ = π((tc, t
′)).

We claim that c′ ∈ [b, c]δ ∩ [c, a]δ. In fact, we have :
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d(a, π(xc)) + d(π(xc), π(zc)) ≤ d(a, π(xb)) + 2d(π(xb), π(xc)) + d(π(xb), π(zc)),

≤ d(a, π(zc)) + δ.

Hence, π(xc) ∈ [a, π(zc)]δ ⊂ [a, c]δ and, as c
′ ∈ [a, π(xc)], we have :

c′ ∈ [c, a]δ;

and similarly, c′ ∈ [b, c]δ which proves our claim.

Since c′ ∈ [a, b], it follows that :

c′ ∈ [a, b] ∩ [b, c]δ ∩ [c, a]δ ⊂Mδ(a, b, c).

Thus, Mδ(a, b, c) is not empty.

As a conclusion, (X, d) is Lδ.

Proposition 2.4.11. For all α ≥ 0, (X, d) is not L′
α.

Proof. For n ∈ N, we set sn = (n, n) ∈ P and s′n = (−n, n) ∈ P . Pick an element

z ∈ H∖ {γ} and denote by ∆n the full triangle of π(sn), π(s
′
n), π(z).

The full triangle ∆n.

Let α ≥ 0 and n ∈ N such that n > α. Consider the full triangle ∆n of π(sn), π(s
′
n), π(z).

The elements of [π(sn), π(z)] and [π(s′n), π(z)] which are α-close to [π(sn), π(s
′
n)] must
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lie in Vδ([π(sn), π(s
′
n)]) and we have, for a ∈ Vδ([π(sn), π(s

′
n)]) ∩ [π(sn), π(z)] and b ∈

Vδ([π(sn), π(s
′
n)]) ∩ [π(s′n), π(z)] :

d(a, b) = n > α.

And hence, ∆n is not α-thin. It follows that (X, d) is not L′
α.

Remark 2.4.12. As in Remark 2.4.9, this construction can be generalized for a finite

collection of pairwise non intersecting geodesic lines.

The space X = (H ⊔
⊔

i=1,2 Pi)/ ∼ for two given geodesic lines.

2.5 Proof of Theorem 7

2.5.1 Gates

Let (X, d) be a metric space.

Definition 2.5.1. Let α ≥ 0, x ∈ X and Y ⊂ X.

We say that p ∈ X is α-between x and Y if p is α-between x and y for all y in Y , i.e.

for all y ∈ Y :

p ∈ [x, y]α.
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An element p ∈ Y which is α-between x and Y is called a α-gate between x and Y . We

denote by Gα(x, Y ) the set of all α-gates between x and Y , i.e.

Gδ(x, Y ) = {p ∈ Y | ∀y ∈ Y, p ∈ [x, y]α}.

Figure : p is a δ-gate between x and [a, b].

Proposition 2.5.2. Let α ≥ 0, x ∈ X and Y ⊂ X. Then :

diam(Gα(x, Y )) ⩽ 2α,

and if p ∈ Gα(x, Y ), d(x, p) ⩽ d(x, Y ) + α.

Proof. Let p be a α-gate between x and Y . For all y ∈ Y , we have d(x, p) + d(p, y) ⩽
d(x, y) + α and then :

d(x, p) ⩽ d(x, Y ) + α.

Moreover, if p1, p2 ∈ Gα(x, Y ), we have :

d(x, Y ) + d(p1, p2) ⩽ d(x, p1) + d(p1, p2) ⩽ d(x, p2) + α ⩽ d(x, Y ) + 2α.

It follows that d(p1, p2) ⩽ 2α.

Definition 2.5.3. Let α ≥ 0. A subset Y of X is said α-gate convex if, for all x ∈ X,

Gα(x, Y ) is non-empty.
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Lemma 2.5.4. Let α ≥ 0, Y be a α-gate convex subset of X and x, x′ ∈ X. For all

p ∈ Gα(x, Y ) and all p′ ∈ Gα(x
′, Y ), we have :

d(p, p′) ≤ d(x, x′) + α.

Proof. Since p, p′ belong to Y , we have the following inequalities :

1) d(x, p) + d(p, p′) ≤ d(x, p′) + α ≤ d(x, x′) + d(x′, p′) + α,

2) d(x′, p′) + d(p′, p) ≤ d(x′, p) + α ≤ d(x′, x) + d(x, p) + α.

The result is obtained by computing 1
2
(1)+2)).

2.5.2 Gates in quasi-median spaces

In this part, we investigate the notion of gate and gate-convexity in the setting of

quasi-median spaces and we give a proof of Theorem 7 by using the fact that intervals are

quasi-gate-convex in a quasi-median space.

We now assume that (X, d) is a δ-median space with (δ-Med2) constant denoted by C.

Proposition 2.5.5. Let a, b ∈ X. The interval [a, b] is 2(C + 1)δ-gate convex.

Moreover precisely, if x ∈ X, every δ
2
-inner point of ∆f (x, a, b) in [a, b] belongs to G2(C+1)δ(x, [a, b]).

Proof. Let x ∈ X and p ∈ [a, b] be a δ
2
-inner point of ∆(x, a, b). Let us show that p ∈

G2(C+1)δ(x, [a, b]).

Let y ∈ [a, b] and consider a′ ∈ [x, a] a δ
2
-inner point of ∆f (x, a, y) and p

′ ∈ [a′, b] a δ
2
-inner

point of ∆f (x, a
′, b).

First, notice that p′ is 2δ-between x and y ; indeed, since p′ ∈ [x, a′]δ and a′ ∈ [x, y]δ, we

have :

d(x, p′) + d(p′, y) ≤ d(x, p′) + d(p′, a′) + d(a′, y) ≤ d(x, y) + 2δ.

Moreover, p′ satisfies :

— p′ ∈ [x, b]δ, by definition of p′ ;

— p′ ∈ [x, a]δ : since p
′ ∈ [x, a′]δ and a

′ ∈ [x, a], we have :

d(x, p′) + d(p′, a) ≤ d(x, p′) + d(p′, a′) + d(a′, a) ≤ d(x, a) + δ;

— p′ ∈ [a, b]δ : since p
′ ∈ [a′, b], a′ ∈ [a, y]δ and y ∈ [a, b], we have :

d(a, p′)+d(p′, b) ≤ d(a, a′)+d(a′, p′)+d(p′, b) ≤ d(a, a′)+d(a′, y)+d(y, b) ≤ d(a, b)+δ.
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It follows that p′ ∈ [x, a]δ ∩ [x, b]δ ∩ [a, b]δ =Mδ(x, a, b) and hence, d(p, p′) is less than Cδ

by (δ-Med2). Thus, we have :

d(x, p) + d(p, y) ≤ d(x, p′) + d(p′, y) + 2d(p′, p) ≤ d(x, y) + 2Cδ + 2δ;

which means that p is 2(C + 1)δ-between x and y.

Proposition 2.5.6. Let δ′ ≥ δ. There exists K = C(δ, δ′, C) ≥ 0 such that, for every

a, b, c ∈ X and every m ∈Mδ′(a, b, c), there exists m0 ∈Mδ(a, b, c) such that :

d(m,m0) ≤ K.

Proof. Let a, b, c ∈ X and m ∈Mδ′(a, b, c). Consider the following elements in X :

— let p1 ∈ [a, b] be a δ
2
-inner point of ∆f (m, a, b) ;

— let p2 ∈ [b, c] be a δ
2
-inner point of ∆f (m, b, c) ;

— let p3 ∈ [c, a] be a δ
2
-inner point of ∆f (m, c, a) ;

— let q ∈ [b, c] be a δ
2
-inner point of ∆f (p1, b, c) and

— let m0 ∈ [q, a], r ∈ [c, a] be δ
2
-inner points of ∆f (q, c, a).

We claim that m0 belong toMδ(a, b, c). Indeed, there exists x ∈ [q, c] such that d(m0, x) ⩽
δ/2, thus x ∈ [b, c] as q belongs to [b, c] and hence, m0 ∈ [b, c]δ∩ [c, a]δ. Moreover, q belongs

to [a, b]δ since q ∈ [p1, b]δ and p1 ∈ [a, b]. It follows that :

d(a,m0) + d(m0, b) ⩽ d(a,m0) + d(m0, q) + d(q, b) = d(a, q) + d(q, b) ⩽ d(a, b) + δ,

and hence, m0 ∈ [a, b]δ ∩ [b, c]δ ∩ [c, a]δ which proves our claim.

We now show that the distance d(m,m0) does not depend on a, b, c. First, notice that, by

Proposition 2.5.5, p1 ∈ G2(C+1)δ(m, [a, b]), p2 ∈ G2(C+1)δ(m, [b, c]) and p1 ∈ G2(C+1)δ(m, [c, a]),

and set :

K0 = K0(δ, δ
′, C) :=

δ′

2
+

3δ

4
+ 2(C + 1)δ.

By Lemma 2.3.5, we have m ∈ [a, b]δ′ ⊂ V δ′
2
+ 3δ

4
([a, b]) and then, using Proposition 2.5.2,

we have the following inequality :

d(m, p1) ≤ d(m, [a, b]) + 2(C + 1)δ ≤ δ′

2
+

3δ

4
+ (2C + 1)δ = K0,

and similarly, we have : d(m, p2) ≤ K0 and d(m, p3) ≤ K0.
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Since, by Proposition 2.5.5, p2 ∈ G2(C+1)δ(m, [b, c]) and q ∈ G2(C+1)δ(p1, [b, c]), we obtain,

by Lemma 2.5.4, that d(p2, q) ≤ d(m, p1) + 2(C + 1)δ = K0 + 2(C + 1)δ and similarly, we

have d(p3, r) ≤ d(m, q) + 2(C + 1)δ. Then, finally :

d(m,m0) ≤ d(m, p3) + d(p3, r) + d(r,m0)

≤ K0 + d(m, q) + 2(C + 1)δ + δ/2

≤ d(m, p2) + d(p2, q) +K0 + 2(C + 1)δ + δ/2

≤ K0 +K0 + 2(C + 1)δ +K0 + 2(C + 1)δ + δ/2

d(m,m0) ≤ 3K0 + (4C + 9
2
)δ.

It follows that, by setting :

K = K(δ′, δ, C) := 3K0 + (4C +
9

2
)δ =

3δ′

2
+ (10C +

51

4
)δ,

we obtain that any δ′-median point of a, b, c is at distance at most K of a δ-median point

of a, b, c.

Corollary 2.5.7. Let δ′ ≥ δ. There exists C ′ = C ′(δ, δ′, C) ≥ 0 such that, for every

a, b, c ∈ X,

diam(Mδ′(a, b, c)) ≤ C ′δ′.

Proof. Let m,m′ ∈ Mδ′(a, b, c). Then, by Proposition 2.5.6, there exists K ≥ 0 depen-

ding only on the constants δ, δ′ and C, and there exists m0,m
′
0 ∈ Mδ(a, b, c) such that

d(m,m0) ≤ K and d(m′,m′
0) ≤ K. Since (X, d) is δ-median, by (δ-Med2), we have

d(m0,m
′
0) ≤ Cδ. It follows that :

d(m,m′) ≤ d(m,m0) + d(m0,m
′
0) + d(m′

0,m
′) ≤ 2K + Cδ.

Remark 2.5.8. Let (X, d) be a quasi-median space and δ0 be the optimal constant such

that X is a δ0-median space with (δ0-Med2) constant denoted by C0. From the proof of

Proposition 2.5.6, when δ ≥ δ0 varies, the function δ 7→ Cδδ, where Cδ is the (δ-Med2)

constant of X (seen as a δ-median space), is a linear function of δ. In fact, we have :

Cδδ = 3δ + (20C0 +
51

2
)δ0.

In particular, if (X, d) is 0-median, then, for δ ≥ 0, X is δ-median with (δ-Med2)

constant Cδ = 3.
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Proof of Theorem 7. Assume (X, d) is a δ-median space with (δ-Med2) constant denoted

by C. Let δ′ ≥ δ and let a, b, c ∈ X.

By (δ-Med1), there exists x ∈ [a, b],y ∈ [b, c] and z ∈ [c, a] δ
2
-close points of ∆(a, b, c). A

fortiori, x, y, z are pairwise δ′

2
-close, then ∆(a, b, c) is δ′

2
-thin. It follows that (X, d) is L′

δ′ .

By Corollary 2.5.7, there exists C ′ ≥ 0 which does not depend on a, b, c such that

diam(Mδ′(a, b, c)) ≤ C ′δ′, and hence, (X, d) satisfies (δ′-Med2).

2.6 Stability properties

2.6.1 Direct product

Proposition 2.6.1. Let (X1, d1), (X2, d2) be, respectively, δ1-median and δ2-median spaces.

Then (X1 ×X2, d1 + d2) is a δ-median space where δ = δ1 + δ2.

Proof. By Theorem 7, X1 and X2 are δ-median spaces for δ := δ1+ δ2. Denote C1 and C2,

the (δ-Med2) constants of X1 and X2 respectively, and set C := C1 + C2. Let us show

that (X, d) is δ-median where X = X1 ×X2, d = d1 + d2.

Let a = (a1, a2), b = (b1, b2), c = (b1, b2) ∈ X.

(δ-Med1) : For i = 1, 2, consider the δi
2
-thin full triangle ∆i := ∆f (ai, bi, ci), and let

pi ∈ [ai, bi], qi ∈ [bi, ci] and ri ∈ [ci, ai] be some δi
2
-close points of ∆i. Then, the pairs

(p1, p2), (q1, q2) et (r1, r2) are pairwise
δ
2
-close with respect to d = d1+d2 and, by definition,

(p1, p2) ∈ [a, b] , (q1, q2) ∈ [b, c] and (r1, r2) ∈ [c, a]. It follows that the full triangle

∆f (a, b, c) is
δ
2
-thin in (X, d).

(δ-Med2) : Let m = (m1,m2) ∈Mδ(a, b, c). Since m ∈ [a, b]δ, we have :

d1(a1,m1) + d1(b1,m1) + d2(a2,m2) + d2(b2,m2) ⩽ d1(a1, b1) + d2(a2, b2) + δ.

Moreover, by triangular inequality, we have d(ai, bi) ⩽ di(ai,mi) + di(bi,mi), for i = 1, 2,

and hence :

di(ai,mi) + di(bi,mi) ⩽ d(ai, bi) + δ.

By expressing that m ∈ [b, c]δ and m ∈ [c, a]δ, analoguous inequalities hold for the pairs

(bi, ci),(ci, ai), thus mi ∈ Mδ(ai, bi, ci) for i = 1, 2. As a consequence, if m = (m1,m2),

m′ = (m′
1,m

′
2) ∈ Mδ(a, b, c), then, for i = 1, 2, by (δ-Med2) for the δ-median space

(Xi, di),

d(mi,m
′
i) ≤ Ciδ.
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We have diam(Mδ(a, b, c)) = diam(Mδ(a1, b1, c1))+ diam(Mδ(a2, b2, c2)) ⩽ C1δ+C2δ and

hence, it follows that :

diam(Mδ(a, b, c)) ≤ Cδ.

Example 2.6.2. A finite product of Gromov hyperbolic spaces is a quasi-median space

with respect to the sum of the metrics.

2.6.2 Free product

In this part, we consider the notion of free product of metric spaces defined by Dreesen

in [Dre11] Remark 2.6 and developed in Section 1.6 and we give a proof of Theorem 8.

We recall here the basic definitions of free product of spaces and we give more details

on the natural metric on the free product induced by metrics on each factors.

Given a set of symbols S, we denote by M(S) the set of words in S i.e. M(S) =

{s1...sn | si ∈ S, n ∈ N}.

Definition (recall of Definition 1.6.1). Let S, S ′ be sets. An alternating word in S and

S ′ is a word w1w2...wn ∈ M(S ⊔ S ′) such that, for i = 1, ..., n − 1, either wi ∈ S and

wi+1 ∈ S ′, or wi ∈ S ′ and wi+1 ∈ S.

We denote Alt(S, S ′) the set of all alternating words in S and S ′.

Definition (recall of Definition 1.6.2). Let X, Y be non-empty sets and fix x0 ∈ X,

y0 ∈ Y . The free product of X and Y on the basepoints x0, y0 is the set :

X ∗
x0∼y0

Y = Alt(X ∖ {x0}, Y ∖ {y0}).

When there is no ambiguity on the fixed points, we simply denote the free product of X

and Y by X ∗ Y .

Subsequently, we denote by e the empty word of X ∗ Y .
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1. Word paths and inner triples

For the next definition, we need the notion of left-cosets in X ∗Y defined in Part 1.6.1,

Definition 1.6.5.

Definition 2.6.3 (Pair decomposition). Let w1, w2 be alternating words of X ∗Y ; w1 and

w2 can be written in the following form :

w1 = wcd1w
′
1,

w2 = wcd2w
′
2,

where :

— wc ∈ X ∗ Y is the largest common beginning word of w1 and w2 (wc can possibly

be the empty word e), that is, wc is the maximal element of Sub(w1) ∩ Sub(w2) for

the order relation ≤ (see Remark 1.6.4) ;

— d1, d2 are the “first different” letters after wc of w1 and w2 respectively, that is :

· when wc ̸= e, we set (for Z = X or Y as appropriate) :

d1 = πwcZ(w1) and d2 = πwcZ(w2);

· when wc = e, if the first letters of w1, w2 belong to the same set Z = X or Y

(this includes w1 or w2 equal to e) we set :

d1 = πeZ(w1) and d2 = πeZ(w2);

otherwise we choose to define d1 and d2 as the eX-projection of w1 and w2 :

d1 = πeX(w1) and d2 = πeX(w2);

— w′
1, w

′
2 ∈ X ∗ Y are the tails of w1, w2 respectively.

This decomposition is called the pair decomposition of w1, w2.

Remark 2.6.4. Let w1, w2 ∈ X ∗ Y .

- In the pair decomposition of w1, w2, d1, d2 are defined in such a way that they belong to

the same set X or Y . Notice that d1 or d2 can possibly be equal to x0 or y0.

- We have d1 = d2 if, and only if, w1 = w2.
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The pair decomposition of w1 = xyx1y1 and w2 = xyx2y2x
′
1y

′
2 is given by :

wc = xy ;

d1 = x1, d2 = x2 ;

w′
1 = y1, w

′
2 = y2x

′
1y

′
2.

Definition 2.6.5. Let w1, w2 ∈ X ∗ Y and consider the pair decomposition w1 = wcd1w
′
1

and w2 = wcd2w
′
2 with w′

1 = w′
1,1...w

′
1,n and w′

2 = w′
2,1...w

′
2,m. We define the family

(m0(w1, w2), ...,mn+m+1(w1, w2)) called the word path from w1 to w2 by :

m0(w1, w2) = wcd1w
′
1,1...w

′
1,n = w1,

mi(w1, w2) = wcd1w
′
1,1...w

′
1,n−i for i = 1, ..., n− 1,

mn(w1, w2) = wcd1,

mn+1(w1, w2) = wcd2,

mn+i+1(w1, w2) = wcd2w
′
2,1...w

′
2,m−i, for i = 1, ...,m− 1,

mn+m+1(w1, w2) = wcd2w
′
2,1...w

′
2,m = w2.

In the degenerated cases where d1 or d2 is x0, y0, we consider x0 and y0 as the empty

letter e.g. if w1 = xy and w2 = yx, the word path from w1 to w2 is (xy, x, e, y, yx) ; or if

w1 = w2, the word path is (w1, w2).
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The word path from w1 to w2.

Remark 2.6.6. - The word path between w1 and w2 does not depend on the choice for

d1, d2 we made in Definition 2.6.3 in the case wc = e : if we had chosen the eY -projection

instead of the eX-projection, the word path between two words would still be the same.

- Notice that if (mi(w1, w2))i=0,...,k is the word path from w1 to w2, then (mk−i(w1, w2))i=0,...,k

is the word path from w2 to w1.

Definition 2.6.7 (Word path divergence). Let w1, w2 ∈ X ∗ Y . Consider w ∈ X ∗ Y and

word paths (m0(w,w1), ...,mk(w,w1)) and (m0(w,w2), ...,ml(w,w2)) from, respectively w

to w1, and w to w2. We set :

jw1,w2(w) = max{j ≤ min{k, l} | mj(w,w1) = mj(w,w2)},

and

Υw1,w2(w) = mjw1,w2 (w)(w,w1)(= mjw1,w2 (w)(w,w2)).

The map Υw1,w2 : X ∗ Y → X ∗ Y by is called the w1, w2-divergence.

The w1, w2-divergence Υw1,w2(w) of a word w ∈ X ∗ Y .
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Remark 2.6.8. — For every j ≤ jw1,w2(w), we have mj(w,w1) = mj(w,w2).

— The w1, w2-divergence Υw1,w2(w) of a word w ∈ X ∗ Y is the last common point of

the word paths from w to w1 and from w to w2 before they split.

Definition 2.6.9 (Inner triple). Let w1, w2, w3 ∈ X ∗ Y .

The triple Υw1,w2(w3),Υw2,w3(w1),Υw3,w1(w2) is called the inner triple of w1, w2, w3.

The next proposition states that the three word paths joining w1, w2 and w3 pairwise

split in the same left-coset in X ∗ Y .

Proposition 2.6.10. Let w1, w2, w3 ∈ X ∗Y . Then there exists a left-coset wZ such that

the alternating words of the inner triple of w1, w2, w3 belong to wZ.

Proof. Consider the inner triple Υw1,w2(w3),Υw2,w3(w1),Υw3,w1(w2) of w1, w2, w3. The sta-

tement is clearly true when at least two words among w1, w2 and w3 are equal. Let us

assume w1, w2, w3 are pairwise distinct.

The pair decompositions for w1, w2, w3 are :

w1 = wcd1v1, w2 = w′
cd

′
2v

′
2, w3 = w′′

cd
′′
3v

′′
3 ,

w2 = wcd2v2; w3 = w′
cd

′
3v

′
3; w1 = w′′

cd
′′
1v

′′
1 .

Up to permute w1, w2 and w3, we can assume that w′
c, w

′′
c ∈ Sub(wc) (i.e. wc is the word

of largest length among wc, w
′
c and w

′′
c ). Notice that it implies w′

c = w′′
c . In fact, we have :

w′′
c ∈ Sub(wc) ∩ Sub(w3) ⊂ Sub(w2) ∩ Sub(w3) = Sub(w′

c),

and

w′
c ∈ Sub(wc) ∩ Sub(w3) ⊂ Sub(w1) ∩ Sub(w3) = Sub(w′′

c );

and hence, w′′
c ≤ w′

c and w
′
c ≤ w′′

c .

Thus, there exists u = u1...uk ∈ X ∗ Y such that wc = w′
cu and moreover, d′3 = d′′3 and

v′3 = v′′3 ; hence, we can reformulate the pair decompositions as follows :

w1 = w′
cud1v1, w2 = w′

cd
′
2v

′
2, w3 = w′

cd
′
3v

′
3,

w2 = w′
cud2v2; w3 = w′

cd
′
3v

′
3; w1 = w′

cd
′′
1v

′′
1 .

Let us show that Υw1,w2(w3),Υw2,w3(w1),Υw3,w1(w2) belongs to a left-coset associated with

wc.
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First case : u = u1...uk ̸= e (i.e. w′
c ∈ Sub∗(wc)).

It follows that d′2 = u1 = d′′1 in the pair decompositions of w2, w3 and w3, w1, and hence,

the elements w′
cu1, ..., w

′
cu1...uk = wc are common to the word paths from w3 to w1 and

from w3 to w2. Moreover, since u ̸= e, wc ̸= e and then d1 ̸= d2 ; thus the two word paths

w3 to w1 and from w3 to w2 splits just after wc as wcd1 ̸= wcd2. It follows that :

Υw1,w2(w3) = wc.

Now, wcd1 belong to the word paths from w1 to w2 (by definition) and from w1 to w3

and notice that wc does not belong to the word path from w1 to w2. Hence, we have

Υw2,w3(w1) = wcd1 and by the same arguments for wcd1 for the word paths from w2,

Υw3,w1(w2) = wcd2. It follows that :

Υw2,w3(w1),Υw3,w1(w2),Υw1,w2(w3) ∈ wcZ.

Second case : u = e (i.e. w′
c = wc).

In this case, the pair decompositions become :

w1 = wcd1v1, w2 = wcd2v2, w3 = wcd
′
3v

′
3,

w2 = wcd2v2; w3 = wcd
′
3v

′
3; w1 = wcd1v1.

- If wc ̸= e and wc ∈ EZ , it follows that Υw2,w3(w1) = wcd1,Υw3,w1(w2) = wcd2 and

Υw1,w2(w3) = wcd
′
3 belong to wcZ.

- If wc = e, then two words among w1, w2, w3 starts with a letter in the same set Z = X

or Y , and the third one starts with a letter in the other set. We can assume without loss

of generality that w2, w3 starts with a letter in the same set Z (but necessarily different

letters since w2 ̸= w3 and wc = e). Hence, we have w1 = tw′
1, w2 = zw′

2, w3 = z′w′
3 with

w′
i ∈ X ∗ Y , z, z′ ∈ Z and t /∈ Z. Hence :

Υw2,w3(w1) = e, Υw3,w1(w2) = z and Υw1,w2(w3) = z′.

and then, Υw2,w3(w1) = e,Υw3,w1(w2),Υw1,w2(w3) ∈ eZ = wcZ.

In every case, the inner triple of w1, w2, w3 belong to a left-coset associated with the largest

subword in the pair decompositions of w1, w2, w3.
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The inner triangle of w1, w2, w3.

2. Free product of metric spaces

Definition 2.6.11. Let (X, dX) and (Y, dY ) be non-empty metric spaces and x0 ∈ X,

y0 ∈ Y be basepoints.

— The length of an alternating word w = w1...wn ∈ X ∗Y with respect to the metrics

dX and dY , is defined by :

lX∗Y (w) =
n∑

i=1

dX,Y (wi, z0),

where dX,Y stands for dX or dY and z0 stands for x0 or y0 as appropriate.

— The distance dX∗Y (w1, w2) for w1, w2 ∈ X ∗ Y written w1 = wcd1w
′
1 and w2 =

wcd2w
′
2 is given as follows :

dX∗Y (w1, w2) = dX,Y (d1, d2) + lX∗Y (w
′
1) + lX∗Y (w

′
2),

and the metric dX∗Y is called the free product metric on the free product of the

metric spaces (X, dX) and (Y, dY ).

Lemma 2.6.12. Let (X, dX) and (Y, dY ) be non-empty metric spaces and x0 ∈ X, y0 ∈ Y

be basepoints. For all w,w′ ∈ X ∗ Y , the word path (m0(w,w
′), ...,mk(w,w

′)) from w to
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w′ is a geodesic path for dX∗Y i.e.

k−1∑
i=0

dX∗Y (mi(w,w
′),mi+1(w,w

′)) = dX∗Y (w,w
′).

Proof. Let w = wcdu, w
′ = wcd

′v be the pair decomposition of w,w′ with u = u1...un and

v = v1...vm in X ∗ Y . Then the word path (m0, ...,mn+m+1) from w1 to w2 is given by :

- mi = wcdun−i for i = 0, ..., n and,

- mn+i+1 = wcd
′vi for i = 0, ...,m.

Hence, we have :

- for i = 0, ..., n− 1,

dX∗Y (mi,mi+1) = dX,Y (un−i, z0);

- for i = n,

dX∗Y (mn,mn+1) = dX,Y (d1, d2); and

- for i = 1, ...,m,

dX∗Y (mn+i,mn+i+1) = dX,Y (vi, z0).

It follows that :

∑n+m
i=0 dX∗Y (mi,mi+1) =

∑n−1
i=0 dX∗Y (mi,mi+1) + dX∗Y (mn,mn+1) +

∑m
i=1 dX∗Y (mn+i,mn+i+1),

=
∑n−1

i=0 dX,Y (un−i, z0) + dX,Y (d1, d2) +
∑m

i=1 dX,Y (vi, z0),

= lX∗Y (u) + dX,Y (d1, d2) + lX∗Y (v),∑n+m
i=0 dX∗Y (mi,mi+1) = dX∗Y (w,w

′).

Proposition 2.6.13. Let wZ be a left-coset of X ∗ Y where w ∈ X ∗ Y and Z = X or Y

as appropriate and πwZ be the wZ-projection on Z. Then the restriction :

πwZ : (wZ, dX∗Y ) → (Z, dZ),

is a bijective isometry whose inverse map π−1
wZ is given by π−1

wZ(z) = wz, for z ∈ Z.

Proof. Let wz,wz′ ∈ wZ with z ̸= z′ ∈ Z. We have :

πwZ(wz) = z and πwZ(wz
′) = z′.
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Consider the pair decomposition of wz,wz′ :

wz = wcdu; wz′ = wcd
′u′.

Then wc = w, d = z, d′ = z′ and u = u′ = e. It follows that :

dX∗Y (wz,wz
′) = dZ(z, z

′) = dZ(πwZ(wz), πwZ(wz
′)).

Hence, the restriction πwZ to wZ is a bijective isometry and it is clear that π−1
wZ : z 7→ wz

is its inverse map.

Corollary 2.6.14. Let α ≥ 0. Let wZ be the left-coset and u, u′, u′′ ∈ wZ. Then

u ∈ [u′, u′′]a ⇔ πwZ(u) ∈ [πwZ(u
′), πwZ(u

′′)]a.

Proof. It is an immediate consequence of the previous proposition, in fact :

dX∗Y (u
′, u) + dX∗Y (u, u

′′) = dZ(πwZ(u
′), πwZ(u)) + dZ(πwZ(u), πwZ(u

′′)).

Proposition 2.6.15. Let (X, dX), (Y, dY ) be non-empty metric spaces and x0 ∈ X, y0 ∈
Y be basepoints. If dX and dY are geodesic metrics, then dX∗Y is a geodesic metric.

Proof. Let w,w′ ∈ X ∗ Y , w = wcdu, w
′ = wcd

′v be the pair decomposition of w,w′ with

u = u1...un and v = v1...vm in X ∗ Y and (m0, ...,mn+m+1) be the word path from w to

w′. Subsequently, Z stands for X or Y and z0 for x0 or y0 as appropriate. As (X, dX) and

(Y, dY ) are geodesic,

— for i = 1, ..., n, there exists a geodesic arc γui
in Z from ui to z0 ;

— there exists a geodesic arc γd,d′ in Z from d to d′ ;

— for i = 1, ...,m, there exists a geodesic arc γvi in Z from z0 to vi.

Hence, we can define the following family (γi)i=0,...,n+m of arcs in X ∗ Y
— for i = 0, ..., n− 1, γi(t) = wcdu1...un−i−1γun−i

(t) for t ∈ [0, dZ(un−i, z0)] ;

— γn(t) = wcγd,d′(t) for t ∈ [0, dZ(d, d
′)] ;

— for i = n+ 1, ..., n+m, γi(t) = wcd
′v1...vi−n−1γvi−n

(t) for t ∈ [0, dZ(vi−n, z0)].
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The family (γi) is a family of geodesic arcs in X ∗ Y since the γui
’s, γd,d′ and the γvi ’s

are geodesic arcs in Z, and moreover, for each i, γi is a geodesic arc from mi to mi+1. By

Lemma 2.6.12, (m0, ...,mn+m+1) is a geodesic path for dX∗Y , hence, by Corollary 2.2.8,

there exists a geodesic arc from m0 = w to mn+m+1 = w′.

Remark 2.6.16. If G,H are groups, as sets, the usual free product of groups G ∗H and

the free product G ∗
eG∼eH

H coincide. Moreover, if G,H are finitely generated and endowed

with the word metric relative to generating sets SG and SH respectively, then the word

metric on G ∗ H relative to the generating set SG ⊔ SH is the same as the free product

metric on the free product of the metric spaces (G, dSG
) and (H, dSH

).

3. Free product of quasi-median spaces

Let (X, dX) and (Y, dY ) be non-empty metric spaces, x0 ∈ X, y0 ∈ Y be basepoints

and (X ∗ Y, dX∗Y ) be the free product of the metric spaces (X, dX) and (Y, dY ).

The metric properties of a geodesic triangle ∆(w1, w2, w3) in the free product X ∗Y lie

in its “inner”geodesic triangle ∆(Υw2,w3(w1),Υw3,w1(w2),Υw1,w2(w3)) which can be seen as

a geodesic triangle in X or Y by Proposition 2.6.10. Hence, metric triangle properties like

CAT (κ) property or Gromov hyperbolicity are stable by free product of metric spaces.

As we shall see, the same goes for the δ-median property.

Proposition 2.6.17. Let δ ≥ 0. For all w1, w2, w3 ∈ X ∗ Y ,

Mδ(w1, w2, w3) =Mδ(Υw2,w3(w1),Υw3,w1(w2),Υw1,w2(w3)),

and, moreover, if wZ is the left-coset containing Υw2,w3(w1),Υw3,w1(w2),Υw1,w2(w3) given

by Proposition 2.6.10, we have :

Mδ(w1, w2, w3) ⊂ V δ
2
(Mδ(Υw2,w3(w1),Υw3,w1(w2),Υw1,w2(w3)) ∩ wZ) .
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Figure 1. Figure 2.

Proof. Let w1, w2, w3 ∈ X. We set w′
1 = Υw2,w3(w1), w

′
2 = Υw3,w1(w2) and w

′
3 = Υw1,w2(w3),

and let wZ be the left-coset containing w′
1, w

′
2, w

′
3. Let us show that Mδ(w1, w2, w3) ⊂

Mδ(w
′
1, w

′
2, w

′
3).

Let m ∈Mδ(w1, w2, w3) = [w1, w2]δ ∩ [w2, w3]δ ∩ [w3, w1]δ.

First case : πwZ(m) ∈ {πwZ(w
′
1), πwZ(w

′
2), πwZ(w

′
3)} (Figure 1.).

Up to permute w1, w2, w3, we can assume that πwZ(m) = πwZ(w
′
1). Then (w2, w

′
2, w

′
1,m)

and (w3, w
′
3, w

′
1,m) are geodesic paths and hence,

dX∗Y (w
′
2,m) + dX∗Y (m,w

′
3) = dX∗Y (w2,m)− dX∗Y (w2, w

′
2) + dX∗Y (m,w3)− dX∗Y (w

′
3, w3)

≤ d(w2, w3)− (dX∗Y (w2, w
′
2) + dX∗Y (w

′
3, w3)) + δ

dX∗Y (w
′
2,m) + dX∗Y (m,w

′
3) ≤ dX∗Y (w

′
2, w

′
3) + δ,

which means that m ∈ [w′
2, w

′
3]δ. Moreover, we have :

dX∗Y (w
′
2, w

′
1) + dX∗Y (w

′
1,m) + dX∗Y (m,w

′
1) + dX∗Y (w

′
1, w

′
3) = dX∗Y (w

′
2,m) + dX∗Y (m,w

′
3)

≤ dX∗Y (w
′
2, w

′
3) + δ

≤ dX∗Y (w
′
2, w

′
1) + dX∗Y (w

′
1, w

′
3) + δ,

and then, dX∗Y (w
′
1,m) ≤ δ

2
. By Lemma 2.2.4, it follows that m ∈ [w′

1, w
′
2]δ ∩ [w′

3, w
′
1]δ. As

a conclusion, m ∈Mδ(w
′
1, w

′
2, w

′
3).

Second case : πwZ(m) ∈ Z ∖ {πwZ(w
′
1), πwZ(w

′
2), πwZ(w

′
3)} (Figure 2.).

Then (w1, w
′
1,m), (w2, w

′
2,m), (w3, w

′
3,m) are geodesic paths, and we have :
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dX∗Y (w
′
1,m) + dX∗Y (m,w

′
2) = dX∗Y (w1,m)− dX∗Y (w1, w

′
1) + dX∗Y (m,w2)− dX∗Y (w

′
2, w2)

≤ d(w1, w2)− (dX∗Y (w1, w
′
1) + dX∗Y (w

′
2, w2)) + δ

dX∗Y (w
′
1,m) + dX∗Y (m,w

′
2) ≤ dX∗Y (w

′
1, w

′
2) + δ.

Hence, m ∈ [w′
1, w

′
2]δ, and by similar computations, m ∈ [w′

2, w
′
3]δ and m ∈ [w′

3, w
′
1]δ. Thus

m ∈Mδ(w
′
1, w

′
2, w

′
3).

It follows that we have the inclusion Mδ(w1, w2, w3) ⊂ Mδ(w
′
1, w

′
2, w

′
3) and moreover,

the reverse inclusion is clear since (wi, w
′
i, w

′
j, wj) is a geodesic path for i, j = 1, 2, 3 with

i ̸= j.

Let us show the second statement. Let m ∈ Mδ(w
′
1, w

′
2, w

′
3) and z = πwZ(m). Then

(w′
1, wz,m), (w′

2, wz,m) and (w′
3, wz,m) are geodesic paths and we have :

dX∗Y (w
′
1, wz) + dX∗Y (wz,w

′
2) ≤ dX∗Y (w

′
1,m) + dX∗Y (m,w

′
2) ≤ dX∗Y (w

′
1, w

′
2) + δ.

Similar arguments holds for the pairs w′
2, w

′
3 and w

′
3, w

′
1 and hence, wz ∈Mδ(w

′
1, w

′
2, w

′
3)∩

wZ.

Moreover, 2d(wz,m) ≤ dX∗Y (w
′
1, w

′
2) − (dX∗Y (w

′
1, wz) + dX∗Y (wz,w

′
2)) + δ ≤ δ, thus m

and wz are δ
2
-close. Finally, we have :

Mδ(w1, w2, w3) =Mδ(w
′
1, w

′
2, w

′
3) ⊂ V δ

2
(Mδ(w

′
1, w

′
2, w

′
3) ∩ wZ) .

Corollary 2.6.18. Let δ ≥ 0. Assume there exists K ≥ 0 such that, for all x, x′, x′′ ∈ X

and for all y, y′, y′′ ∈ Y , diam(Mδ(x, x
′, x′′)) ≤ K and diam(Mδ(y, y

′, y′′)) ≤ K. Then for

all w1, w2, w3 ∈ X ∗ Y ,

diam(Mδ(w1, w2, w3)) ≤ K + δ.

Proof. Let w1, w2, w3 ∈ X ∗ Y , w′
1 = Υw2,w3(w1), w

′
2 = Υw3,w1(w2), w

′
3 = Υw1,w2(w3) be

the inner triple of w1, w2, w3 and wZ be the left-coset containing w′
1, w

′
2, w

′
3. Let m,m

′ ∈
Mδ(w1, w2, w3). Then, by the previous proposition, there exists m0,m

′
0 ∈Mδ(w

′
1, w

′
2, w

′
3)∩

wZ such that dX∗Y (m,m0) ≤ δ
2
and dX∗Y (m,m0) ≤ δ

2
and notice that, by Corollary 2.6.14,

πwZ(m0), πwZ(m
′
0) ∈Mδ(πwZ(w

′
1), πwZ(w

′
2), πwZ(w

′
3)) ⊂ Z,
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and hence, by hypothesis, dZ(πwZ(m0), πwZ(m
′
0)) ≤ K.

It follows that, by Proposition 2.6.13 dX∗Y (m0,m
′
0) = dZ(πwZ(m0), πwZ(m

′
0)) ≤ K ; and

finally,

dX∗Y (m,m
′) ≤ dX∗Y (m,m0) + dX∗Y (m0,m

′
0) + dX∗Y (m

′
0,m

′) ≤ K + δ.

Proposition 2.6.19. Let δ, δ′ ≥ 0.

1. If (X, dX) is Lδ and (Y, dY ) is Lδ, then (X ∗ Y, dX∗Y ) is Lmax(δ,δ′).

2. If (X, dX) is L
′
δ and (Y, dY ) is L

′
δ, then (X ∗ Y, dX∗Y ) is L

′
max(δ,δ′).

Proof. Let α = max(δ, δ′). Let w1, w2, w3 ∈ X and w′
1 = Υw2,w3(w1), w

′
2 = Υw3,w1(w2), w

′
3 =

Υw1,w2(w3) be the inner triple of w1, w2, w3. Then, by Proposition 2.6.10, there exists a

left-coset wZ such that w′
1, w

′
2, w

′
3 ∈ wZ. We set :

z1 = πwZ(w
′
1), z2 = πwZ(w

′
2) and z3 = πwZ(w

′
3).

1. Assume that (X, dX) is Lδ and (Y, dY ) is Lδ′ . Then, by Remark 2.3.8, for Z = X or

Y , (Z, dZ) is Lα and hence, there exists z ∈Mα(z1, z2, z3). It follows, by Corollary 2.6.14

and Proposition 2.6.17, that

wz ∈Mα(w
′
1, w

′
2, w

′
3) =Mα(w1, w2, w3).

This shows that X ∗ Y is Lα.

2. Assume that (X, dX) is L
′
δ and (Y, dY ) is L

′
δ′ . Then, by Remark 2.3.8, for Z = X or Y ,

(Z, dZ) is L
′
α. Let z

′
1 ∈ [z1, z2], z

′
2 ∈ [z2, z3], z

′
3 ∈ [z3, z1] be

α
2
-inner points of ∆f (z1, z2, z3).

We have :

— wz′1 ∈ [w′
1, w

′
2], wz

′
2 ∈ [w′

2, w
′
3] and wz

′
3 ∈ [w′

3, w
′
1] by Corollary 2.6.14 ;

— dX∗Y (wz
′
i, wz

′
j) = dZ(zi, zj) ≤ δ

2
by Proposition 2.6.13.

Thus, wz′1, wz
′
2, wz

′
3 are

α
2
-inner points of ∆f (w

′
1, w

′
2, w

′
3) and since (w1, w

′
1, w

′
2, w2), (w2, w

′
2, w

′
3, w3)

and (w3, w
′
3, w

′
1, w1) are geodesic paths, wz

′
1, wz

′
2, wz

′
3 are

α
2
-inner points of ∆f (w1, w2, w3).

It follows that X ∗ Y is L′
α.

Theorem 8.

A free product of quasi-median spaces is quasi-median for the free product metric.
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Proof of Theorem 8. Let δ, δ′ ≥ 0 and assume that (X, dX) is δ-median and (Y, dY ) is

δ′-median. By Theorem 2.5.6, (X, dX) and (Y, dY ) are α-median where α = max(δ, δ′)

and denote by C the (α-Med2) constant of X and Y .

As (X, dX), (Y, dY ) are L
′
α, by Proposition 2.6.19, (X ∗Y, dX∗Y ) is L

′
α. Moreover, we have,

for all x, x′, x′′ ∈ X and all y, y′, y′′ ∈ Y :

diam(Mα(x, x
′, x′′)) ≤ Cδ and diam(Mα(y, y

′, y′′)) ≤ Cδ.

Then, by Corollary 2.6.18, for all w1, w2, w3 ∈ X ∗ Y ,

diam(Mα(w1, w2, w3)) ≤ (C + 1)δ.

As a conclusion, (X ∗ Y, dX∗Y ) is α-median with (α-Med2) equal to C + 1.

Corollary 2.6.20. If (X, dX), (Y, dY ) have bounded diameter, then X ∗ Y is a δ-median

space for δ = max(diam(X), diam(Y )).

Proof. If (Z, dZ) has bounded diameter, then Z is α-median for α = diam(Z). Hence, the

statement follows immediately from Theorem 8.
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Chapter 3

A plig metric on compactly

generated groups

3.1 Introduction

The goal of this chapter is to give an explicit construction of a proper left-invariant me-

tric which generates the topology on locally compact, compactly generated groups which

only depends on the Haar measure on the group and on the notion of V -path for a well

chosen generating set V .

Let G be a compactly generated group and consider V a compact symmetric genera-

ting neighbourhood of the identity element e of G. Since V generates the group, every

element of G can be written as a word in V . To this word, we associate a path from the

identity to the element x called V -path from e to x, namely, a finite sequence of elements

of G, (w0, ..., wn) such that w0 = e, wn = x, and w−1
i−1wi ∈ V for i = 1, ..., n. More pre-

cisely, given a word x = v1...vn where vi ∈ V , the V -path associated with this word is

w0 = e and wi = wi−1vi for i = 1, ..., n. Conversely, a V -path (w0, ..., wn) from e to x gives

rise to a word representing x in the generating set V : x = v1...vn where vi = w−1
i−1wi.

The equivalent notion of word in V /V -path allows us to define a length function l on

G :

lV (x) = inf{n ∈ N | x ∈ V n} = inf{n ∈ N | ∃(w0, ..., wn) V -path from e to x}.
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The metric d(x, y) = l(x−1y) on G induced by this length function is left-invariant and

proper but, clearly, in the non discrete case, it does not generate the topology of the group.

This metric, called the word metric on G, only depends on the notion of words in V . In

the same philosophy, we want to define, on compactly generated groups, a “canonical“

metric which only depends on the notion of path on a compact generating set and which

has properties as good as the word metric in the finitely generated case : properness,

left-invariance and generation of the topology.

Subsequently, we assume that G is a locally compact, compactly generated group.

For simplicity, we say that V is a csg neighbourhood when V is a compact symmetric

generating neighbourhood in G.

3.2 Preliminaries

On a locally compact group G, there exists a unique (up to a multiplicative constant)

left-invariant measure called the Haar measure. If V is a csg neighbourhood of e, we consi-

der µV the left-invariant Haar measure on G such that µV (V ) = 1.

Subsequently, we will use the convenient terminology of [HP06] : we say that a metric on

G is a plig metric if it is a proper left-invariant metric that generates the topology of G.

Definition 3.2.1. (V -paths/words in V )

Let V be a csg neighbourhood of e.

— Let x, y be elements of G. A finite sequence (w0, ..., wn) of elements of G where

n ∈ N is called a V -path of length n from x to y if w0 = x, wn = y and w−1
i−1wi ∈

V ∖ {e} for i = 1, ..., n.

— Let x be an element of G, v1, ..., vn be elements of V ∖ {e} where n ∈ N. We say

that x is represented by the word v1...vn of length n if x = v1...vn.

Remark 3.2.2.

- As said in the introduction, to every word in V of length n representing x ∈ G, we can

associate a V -path of length n from e to x, and conversely : if x = v1...vn is a word in V ,

we get a V -path from e to x by setting w0 = e and, for i = 1, ..., n, wi = v1...vi ; and if

(w0, ..., wn) is a V -path from e to x, we get a word x = v1...vn by setting vi = w−1
i−1wi.
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- Since V generates the group, for every x ∈ G, there exists n ∈ N such that x is repre-

sented by a word in V of length n, and then, by the previous remark, there exists a V -path

of length n from e to x.

Definition-Proposition 3.2.3. (word length/word metric)

Let x, y be elements of G. We call word length of x the quantity lV (x) = inf {n ∈ N | x ∈ V n}
and word metric the function δV on G×G such that δV (x, y) = l(x−1y).

Then lV is a length function on G, δV is a proper left-invariant metric on G and we have :

lV (x) = inf{n ∈ N | x = v1...vn word in V } = inf{n ∈ N | (w0, ..., wn) V -path from e to x}.

The following lemma is a folkloric result :

Lemma 3.2.4. Let V and V ′ be csg neighbourhoods of e. Then lV and lV ′ are bi-Lipschitz.

Proof. Denote N = min{n ∈ N | V ′ ⊂ V n}. Since V ′ is compact and V generates G, we

have N < +∞ : indeed, {x
◦
V }x∈V ′ is an open cover of V ′, then there exists x1, ..., xk ∈ V ′

such that V ′ ⊂
∪k

i=0 xiV . Set N0 = max{n ∈ N | xi ∈ V n, i = 1, ..., k} which is clearly

finite since V generates G. We have N ≤ N0 +1 since every element of V ′ can be written

as xiy for some y ∈ V . Moreover, remark that N = max{lV (x) | x ∈ V ′}.

Let x ∈ G and x = x′1...x
′
n be a word in V ′ of minimal length (i.e. lV ′(x) = n). We

can write every x′i as a word in V of minimal length ni where ni ≤ N for i = 1, ..., n.

Hence, lV (x) ≤ Nn = NlV ′(x). By interverting the roles of V and V ′, we also have

lV ′(x) ≤ N ′lV (x) where N ′ = min{n ∈ N | V ⊂ V ′ n}. It follows that lV and lV ′ are

bi-lipschitz.

3.3 A pseudo-metric from V -paths

3.3.1 Definitions

In this section, we give the definition of a pseudo-metric depending on the notion of

V -paths between any two points of G.

For x, y ∈ G, consider a V -path (w0, ..., wn) between x and y. The union of the left-

translates wiV is a compact set of µV -measure bigger than 1 and less than n+ 1.
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wn

=x

xV

Union of the left translates wiV for a V -path from e to x ∈ G.

This allows us to consider the following quantities :

Definition 3.3.1. Let V be a csg neighbourhood of e. Let x, y ∈ G and (w0, ..., wn) be a

V -path from x to y. We call V -length of (w0, ..., wn) the quantity :

LV (w0, ..., wn) = µV

(
n∪

i=0

wiV

)
− 1,

and we set :

ρV (x, y) = inf {LV (w0, ..., wn) | (w0, ..., wn)V -path from x to y} .

Proposition 3.3.2. Let V be a csg neighbourhood of e. Then ρV is a left-invariant pseudo-

metric on G.

Proof. Let x, y, z ∈ G.

- left-invariance : As µV is left-invariant, LV is left-invariant. Hence, ρV is left-invariant.

- ρV is symmetric : Let w = (w0, ..., wn) be a V -path from x to y and set w′
i = wn−i

for i = 0, ..., n.

Then w′
0 = wn = y, w′ −1

i−1w
′
i = w−1

n−i+1wn−i ∈ V for i = 1, ...n since V is symmetric, and
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w′
n = w0 = x. Hence, (w′

0, ..., w
′
n) is a V -path from y to x.

In addition, we clearly have LV (w
′
0, ..., w

′
n) = LV (w0, ..., wn). It follows that ρV (x, y) =

ρV (y, x).

- Triangle inequality : Let ε > 0. Consider V -paths t = (t0, ..., tn) from x to y and

s = (s0, ..., sm) from y to z such that :

LV (t) ≤ ρV (x, y) +
ε

2
,

LV (s) ≤ ρV (y, z) +
ε

2
.

The sequence w = (w0, ..., wn+m) such that wi = ti for i = 0, ..., n and wn+i = si for

i = 1, ...,m is a V -path from x to z.

Moreover, we have
n+m∪
i=0

wiV = (
n∪

i=0

tiV ) ∪
(
(
m∪
i=1

siV )∖ V
)
and then :

LV (w) ≤ µV (
n∪

i=0

tiV )− 1 + µV ((
m∪
i=1

siV )∖ V ) = µV (
n∪

i=0

tiV )− 1 + µV (
m∪
i=0

siV )− 1.

Hence, LV (w) ≤ ρV (x, y) + ρV (y, z) + ε.

It follows that ρV (x, z) ≤ ρV (x, y) + ρV (y, z).

3.3.2 Properties of the pseudo-metric ρV

Subsequently, for a csg neighbourhood V of e, we denote BV (x, r) = {y | ρV (x, y) ≤ r}
the ρV -ball of center x ∈ G and radius r ≥ 0.

Lemma 3.3.3. Let K be a compact subset of G and µ be a left-invariant Haar measure

on G. The following functions from the topological group G to R+ are continuous :

— ϕK : x 7→ µ(K ∩ xK) ;

— φK : x 7→ µ(K ∪ xK) ; and

— ψK : x 7→ µ(K △ xK).

Proof. Notice that, for every x ∈ G, φK(x) = 2µ(K)−ϕK(x) and ψK(x) = φ(x)−ϕK(x).

Hence, it is sufficient to show that ϕK is continuous.

Let ε > 0. Since µ is outer regular, there exists an open set U such that K ⊂ U and

µ(U ∖K) <
ε

2
.
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Moreover, there exists a symmetric neighbourhoodW of e (which depends on ε) such that

WV ⊂ U (see [Hal50] Chapter XII, §61).

Let x, y ∈ G such that x−1y ∈ W . Without loss of generality, we can assume that

ϕK(x) ≥ ϕK(y). Then we have :

|ϕK(x)− ϕK(y)| = µ(K ∩ xK)− µ(K ∩ yK),

≤ µ((K ∩ xK)∖ (K ∩ yK)),

≤ µ((K ∩ xK)△ (K ∩ yK)),

but (K ∩ xK)△ (K ∩ yK) = K ∩ (xK △ yK), then :

|ϕK(x)− ϕK(y)| ≤ µ(xK △ yK),

= µ(y−1xK ∖K) + µ(x−1yK ∖K) ≤ 2µ(WK ∖K)

|ϕK(x)− ϕK(y)| ≤ µ(U ∖K) < ε

Proposition 3.3.4. Let V be a csg neighbourhood of e. Then the topology induced by ρV

is coarser than the topology of G.

Proof. Denote by TG the topology of G and let VG(e) = {U ∈ TG | e ∈ U} ; then VG(e)

is a fundamental system of neighbourhoods of e for TG. Since ρV is a pseudo-metric, the

family VρV (e) = {BV (e, r) | r > 0} is a fundamental system of neighbourhoods of e for

the topology TρV of G induced by ρV .

Let us show that every element of VρV (e) contains an element of VG(e).

Consider the function fV : x 7→ µV (V ∪ xV ) − 1 from G to R+ ; by Lemma 3.3.3, fV is

continuous with respect to TG.

Let r > 0. Since fV is continuous, f−1
V ([0, r[) belongs to VG(e) and we set U =

f−1
V ([0, r[) ∩

◦
V ∈ VG(e). Then U ⊂ BV (e, r) : indeed, for all v ∈ V ,

ρV (e, v) = µV (V ∪ vV )− 1 = fV (v),

and hence, for all u ∈ U , ρV (e, u) = fV (u) < r.

As a consequence, every ball of radius r > 0 of VρV (e) contains an element of VG(e).

It follows that TρV is coarser than TG.
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Notation 3.3.5. Let V be a csg neighbourhood of e. For x ∈ G and w = (w0, ..., wk) a

V -path from e to x, we denote, for i ∈ N :

Mi(w) = {m ∈ [[0, k]] | lV (wm) = i}.

Lemma 3.3.6. Let V be a csg neighbourhood of e. Let x ∈ G such that lV (x) = n and

w = (w0, ..., wk) be a V -path from e to x. Then, for i = 0, ..., n,

Mi(w) ̸= ∅.

Proof. The case x = e is trivial and if x ̸= e, notice that for i = 0, 1 and i = n, clearly

Mi ̸= ∅ since w0 = e ∈M0, w1 ∈M1 and wn = x ∈Mn.

Then we have to show this lemma for n ≥ 3 and i ∈ {2, ..., n − 1}. Let n ≥ 3 and

assume by contradiction that there exists j ∈ {2, ..., n − 1} such that Mj = ∅. Denote
j0 = min{i ∈ [[2, ..., n− 1]] |Mi = ∅} ≤ j.

By definition of j0, Mj0−1 ̸= ∅ and consider m = maxMj0−1 ≥ 1. Then we have lV (wm) =

j0 − 1 and there exists v ∈ V such that wm+1 = wmv ∈ V j0 . Then, as Mj0 = ∅ and m is

maximal, we have, for every 1 ≤ l ≤ k −m :

lV (wm+l) < j0 − 1.

It follows that n = lV (wk) < j0 − 1 which is a contradiction.

Notation 3.3.7. Let V be a csg neighbourhood of e. Let x ∈ G such that lV (x) = n and

w = (w0, ..., wk) be a V -path from e to x. We denote, for i = 0, ..., n :

mi(w) = maxMi(w) = max{m ∈ [[0, k]] | lV (wm) = i}.

Remark 3.3.8. we have 0 ≤ m0(w) < m1(w) < ... < mn(w) = k.

Lemma 3.3.9. Let V be a csg neighbourhood of e. Let n ∈ N and x ∈ G such that

lV (x) = 3n. Then ρV (e, x) ≥ n.

Proof. Let x ∈ G such that lV (x) = 3n and w = (w0, ..., wk) be a V -path from e to x.

Denote ti = wm3i(w) for i = 0, ..., n. Let us show that, for i = 0, ..., n− 1, tiV ∩ ti+1V = ∅.

Assume by contradiction that there exists v, v′ ∈ V such that ti+1v = tiv
′. Then, as

lV (ti) = 3i, ti+1 = tiv
′v−1 belongs to V 3i+2 which is a contradiction since lV (ti+1) = 3i+3.
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Hence tiV ∩ ti+1V = ∅.

It follows that :

µV (
k∪

i=0

wiV ) ≥ µV (
n∪

i=0

tiV ) ≥ n+ 1.

This is true for all V -path (w0, ..., wk) from e to x and then ρV (e, x) ≥ n.

Proposition 3.3.10. Let V be a csg neighbourhood of e. Then ρV is a proper pseudo-

metric on G.

Proof. By Proposition 3.3.4, for all r ≥ 0, BV (e, r) is closed for the topology of G. Let us

show that, for every r ≥ 0, there exists a compact set containing BV (e, r).

Let r ≥ 0. If x ∈ BV (e, r), we have ρV (e, x) < ⌊r⌋+ 1 and then, by Lemma 3.3.9 :

lV (x) < 3(⌊r⌋+ 1).

Hence x belongs to V 3(⌊r⌋+1) which is a compact set since V is compact.

Proposition 3.3.11. Let V be a csg neighbourhood of e. Then (G, ρV ) and (G, δV ) are

quasi-isometric.

Proof. Let x ∈ G of word length n. Let (w0, ..., wn) be a V -path from e to x of length n.

We have :

ρV (e, x) ≤ µV (
n∪

i=0

wiV )− 1 ≤ n = lV (x).

Moreover,

ρV (e, x) ≥
⌊n⌋
3

≥ lV (x)

3
− 1

3
.

It follows that id : G→ G is a quasi-isometry between (G, ρV ) and (G, δV ).

Corollary 3.3.12. Let V, V ′ be a csg neighbourhoods of the identity. Then (G, ρV ) and

(G, ρV ′) are quasi-isometric.

Proof. By Lemma 3.2.4, lV and lV ′ are bi-Lipschitz and then, (G, δV ) and (G, δV ′) are

quasi-isometric. Hence, by transitivity, Proposition 3.3.11 implies that (G, ρV ) and (G, ρV ′)

are quasi-isometric.

From a result of Guivarc’h in [Gui73] (see Theorem 1.1), we deduce that the volume

of ρV -balls is exponentially controlled :
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Theorem 3.3.13 (Guivarc’h). The sequence (µV (V
n)

1
n )n∈N∗ has a limit larger or equal

to 1.

Proposition 3.3.14. Let V be a csg neighbourhood. The ρV -balls have exponentially

controlled growth.

Proof. Let l ≥ 1 be the limit of the sequence (µV (V
n)

1
n )n∈N∗ . Then there exists α > 0

such that for n big enough,

µV (V
n) ≤ eαn.

By Lemma 3.3.9, for r > 0, BV (e, r) ⊂ V 3(⌊r⌋+1). It follows that :

µV (BV (e, r)) ≤ e3α(r+1).

3.4 A plig metric

Without any additional conditions on V , ρV is not a metric in general : for instance, if

there exists v ∈ V ∖{e} such that vV = V , we can remark that ρV (e, v) = µV (V )−1 = 0

and then ρV does not separate v from e.

Lemma 3.4.1. Let V be a csg neighbourhood of e and x ∈ G. Then ρV (x, e) = 0 if, and

only if, µV (V △ xV ) = 0.

Proof. Let y ∈ G∖ V . Since the topological group G is regular, there exists an open set

U ⊂ yV such that y ∈ U and U ∩ V = ∅. Then :

µV (yV ∖ V ) ≥ µV (U) > 0.

Hence we have ρV (y, e) ≥ µV (yV ∖ V ) > 0 and µV (V △ xV ) ≥ µV (yV ∖ V ) > 0. As a

consequence, we have to prove our statement for x ∈ V .

For all x ∈ V , ρV (e, x) = µV (V ∪ xV ) − 1 = µV (xV ∖ V ) and, by left-invariance of µV ,

we also have ρV (e, x) = µV (V ∖ xV ).

It follows that :

ρV (e, x) =
1

2
µV (V △ xV ).

As a consequence, ρV (x, e) = 0 if, and only if, µV (V △ xV ) = 0.

121



Definition 3.4.2. We say that a compact neighbourhood V of e is mobile if, for every

x ∈ V ∖ {e},
µV (V △ xV ) > 0.

Remark 3.4.3.

(1) In G = C∗, the csg neighbourhood V = {z ∈ C | 1
2
≤ |z| ≤ 2} is not mobile : indeed,

for v = eiθ ∈ V , vV = V .

(2) It is clear that if V is mobile, V ⊊ G. Then, subsequently, we exclude the cases where

#G = 1, 2 or 3.

Lemma 3.4.4. Let V be a csg neighbourhood of e. The set KV = {x ∈ V | µV (V △ xV ) = 0}
is a compact subgroup of G.

Proof. The set KV is a subgroup of G as the stabilizer for the regular representation of G

on L1(G,µV ) of 1V . Moreover, KV is contained in the compact set V and it is a closed set

as the reverse image of {0} by the continuous function ψK : x 7→ µ(V △ xV ) (see Lemma

3.3.3). Hence, KV is compact.

Proposition 3.4.5. Let V be a csg neighbourhood of e.

Then ρV is a left-invariant metric on G if, and only if, V is mobile.

Proof. By Proposition 3.3.2, ρV is a left-invariant pseudo-metric. Moreover, it follows by

Lemma 3.4.1 that ρV separates points of G if, and only if V is mobile.

Proposition 3.4.6. Let V be a csg mobile neighbourhood of e. Then ρV generates the

topology of G.

Proof. We keep the notation of the proof of Proposition 3.3.4. By Proposition 3.3.4, the

topology TρV induced by ρV is coarser than the topology TG of G. It remains to prove

that TG is coarser than TρV .

Let us consider the TG-continuous function fV : x 7→ µV (V ∪ xV ) − 1. Notice that if

x /∈ V 2, then fV (x) = 1. In fact, if x /∈ V 2, V ∩ xV = ∅.
Let U ∈ VG(e). Let us show that there exists R > 0 such that f−1

V ([0, R[) ⊂ U . Let

(xn)n∈N∗ be a G valued sequence such that, for n ∈ N∗, fV (xn) <
1
n
. By the previous

remark, for every n, xn ∈ V 2.

Assume by contradiction that there exists N ∈ N∗ such that for all n ≥ N , xn /∈ U . As
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V 2 is compact and U c is closed, there exists a subsequence of (xn) which converges to

x ∈ U c. By continuity of fV , fV (x) = 0. Moreover, we have :

0 = fV (x) = µV (V ∪ xV )− 1 =
1

2
µV (V △ xV ).

Hence, as V is mobile, x = e. Contradiction since x /∈ U .

It follows that there exists 0 < R < 1 such that f−1
V ([0, R[) ⊂ U . Thus, for every x ∈

BV (e, r) with r < R, we have fV (x) ≤ ρV (e, x) ≤ r < R and then BV (e, r) ⊂ f−1
V ([0, R[) ⊂

U .

Hence, for every U in VG(e), there exists r > 0 such that the ball BV (e, r) ∈ VρV (e) is

contained in U .

It follows that TG and TρV are equivalent and then, ρV generates the topology TG of G.

We can now summarise all these statements in the following theorem :

Theorem 9.

Let G be a locally compact, compactly generated group and V be a compact, symmetric,

mobile and generating neighbourhood of the identity. Then ρV is a plig metric on G for

which the balls have exponentially controlled growth.

Moreover, if V ′ be a compact, symmetric, mobile and generating neighbourhood of the

identity, then (G, ρV ) and (G, ρV ′) are quasi-isometric.

Remark 3.4.7. By a result of Haagerup and Przybyszewska in [HP06] (see Theorem 6.5),

given a plig metric on a locally compact G, one can build a proper isometric affine action

on the Banach space
⊕

n∈N∗ L2n(G). As we discuss in Part 4.3.1, it could be interesting

to improve this result using the explicit plig metric ρV .

3.5 Optimal V -paths

It is natural to ask wether, for any two elements of G, there exists a V -path joining

this two elements which realises the distance between them.

Definition 3.5.1. Let V be a csg neighbourhood of e and x, y ∈ G.

We say that a V -path (w0, ..., wn) from x to y is minimal if lV (x
−1y) = n.

We say that a V -path (w0, ..., wn) from x to y is optimal if ρV (x, y) = µV (∪n
i=0wiV )− 1.

123



We show, in the following lemma, that for a fixed x of G, the distance ρV (e, x) can

be obtained considering only V -paths from e to x of bounded length (where the bound

depends on V and the word length of x). A way to prove this is, given a V -path from e

to x of length big enough, to shorten this path while preserving its contribution in the

distance ρV (e, x).

Lemma 3.5.2. Let V be a csg neighbourhood of e and x, y ∈ G.

There exists an integer N such that :

ρV (x, y) = inf

{
µV

(
n∪

i=0

wiV

)
| (w0, ..., wn)V -path from x to y, n ≤ N

}
− 1

.

Proof. Let x ∈ G such that lV (x) = n ∈ N∗. We have ⌊n
3
⌋ ≤ ρV (e, x) ≤ n and notice that,

for a V -path (w0, ..., wk) from e to x, if there exists 1 ≤ j ≤ k such that lV (wj) > 3(n+1),

then :

µV (∪k
i=0wiV )− 1 ≥ µV (∪j

i=0wiV )− 1 ≥ ρV (e, wj) ≥ n+ 1 ≥ ρV (e, x) + 1.

It follows that the quantity ρV (e, x) can be obtained considering only the infimum among

V -paths (w0, ..., wk) such that for j = 0, ..., k, lV (wj) ≤ 3(n+ 1).

The set V 3(n+1) is compact and, by continuity of (x, y) 7→ x−1y, there exists a symmetric

open neghibourhood U of e such that U ⊂ U2 ⊂ V (see [Die69] Chapter XII, §8). As
{yU}y∈V 3(n+1) is an open cover of V 3(n+1), there exists y1, ..., ym ∈ V 3(n+1) such that

V 3(n+1) ⊂ ∪m
i=1yiU .

Let (w0, ..., wk) be a V -path from e to x such that for j = 0, ..., k, lV (wj) ≤ 3(n + 1).

Assume that k ≥ 3m. Then there exists i ∈ [[1,m]] such that #{wj | wj ∈ yiU} ≥ 3. We

denote by j0 the smallest index j such that wj ∈ yiU and by j1 the biggest of such indices.

We have wj0 = yiu0, wj1 = yiu1 for some u0, u1 ∈ U and then :

w−1
j0
wj1 = u−1

0 u1 ∈ U2 ⊂ V.

Hence, w′ = (w0, ..., wj0 , wj1 , ..., wk) =: (w′
0, ..., w

′
k′) is a V -path from e to x which length

k′ satisfies k′ ≤ k− 1 since there is at least one wj with j0 < j < j1 and we clearly have :

µV (∪k
i=0wiV ) ≥ µV (∪j0

i=0wiV ∪ ∪k
i=j1

wiV ) = µV (∪k′

i=0w
′
iV ).
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If the length k′ of w′ is still bigger than 3m, we shorten w′ in the same way, and then,

by induction, we obtain a V -path w∗ = (w∗
0, ..., w

∗
k∗) from e to x of length k∗ less than

N = 3m and such that :

µV (∪k
i=0wiV ) ≥ µV (∪k∗

i=0w
∗
i V ).

Lemma 3.5.3. Let V be a csg neighbourhood of e and n ∈ N∗.

The function ϕ from G×n = G× ...×G
n times

to R+ defined by ϕ(g1, ..., gn) = µV (∪n
i=1giV )− 1

is continuous for product topology.

Proof. Let ε > 0. There exists an open set U such that V ⊂ U and µV (U ∖ V ) < ε
n
by

outer regularity of µV . Consider a symmetric neighbourhood W of e such that WV ⊂ U .

Then W×n is a neighbourhood of the identity (e, ..., e) of the topological group G×n. Let

g1, ..., gn, h1, ..., hn ∈ G such that h−1
i gi ∈ W for i = 1, ..., n.

Without loss of generality, we can assume that ϕ(g1, ..., gn) ≥ ϕ(h1, ..., hn). Then :

|ϕ(g1, ..., gn)− ϕ(h1, ..., hn)| = µV (∪n
i=1giV )− µV (∪n

i=1hiV )

≤ µV ((∪n
i=1giV )∖ (∪n

i=1hiV ))

≤ µV (∪n
i=1(giV ∖ hiV ))

≤
∑n

i=1 µV (giV ∖ hiV ) =
∑n

i=1 µV (h
−1
i giV ∖ V )

≤
∑n

i=1 µV (WV ∖ V )

≤ nµV (U ∖K) < ε
Then ϕ is continuous.

Theorem 10.

Let V be a csg neighbourhood of e. For every x ∈ G, there exists an optimal V -path from

e to x.

Proof of Theorem 10. Let x ∈ G. Let N be the integer given by Lemma 3.5.2 and denote :

PN
x = {(w0, ..., wN) | ∃k ≤ N, (w0, ..., wk) is a V -path from e to x and wk+1 = ... = wN = wk},

and

WN
x = {(v1, ..., vN) | vi ∈ V for i = 1, ..., N and v1...vN = x}.

Consider the topological groups G×N and G×(N+1) respectively endowed with the product

topology of G. Then WN
x is a compact subset of G×N . In fact, WN

x ⊂ V ×N which is

compact in G×N as a product of compact sets of G and WN
x = F−1({x}), where F :
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G×N → G is the continuous function defined by F (g1, ..., gN) = g1...gN .

It follows that PN
x is a compact subset of G×(N+1) as the direct image of WN

x by the

continuous function (g1, ..., gN) 7→ (e, g1, g1g2, ..., g1g2...gN).

By Lemma 3.5.2, we have :

ρV (e, x) = inf ϕ(PN
x )

where ϕ : (g0, ..., gN) 7→ µV (∪N
i=0giV )− 1 is continuous by Lemma 3.5.3, and hence, since

PN
x is compact, this infimum is reached by an element (w0, ..., wN) of P

N
x which gives rise

to a V -path (w0, ..., wk) from e to x such that :

ρV (e, x) = µV (∪k
i=0wiV )− 1.
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Perspectives

In this part, we list some questions and developements about the notions we consider

in this thesis.

4.1 Questions and developements about the struc-

ture of space with labelled partitions

4.1.1 Structure of labelled partitions on graphs and manifolds

We give here a way to build a ℓq-structure of labelled partitions on a graph. We consider

a real valued function on the set of vertices such that its differential satisfies a ℓq condition.

Definition 4.1.1. Let Γ = (V,E) be a graph with a fixed orientation on edges and let

f : V → R. For e = (e−, e+) ∈ E, we denote :

df(e) := f(e−)− f(e+).

The map df : E→ R is called the differential of f on E.

Let Γ = (V,E) be a connected graph and G be a group acting isometrically on this

graph. We consider a function f : V → R and we set :

P = {g.f | g ∈ G},

where g.f(v) = f(g−1v), for v ∈ V and g ∈ G.

Let H = Stab(f) < G and notice that P ≃ G/H.

Proposition 4.1.2. Let q ≥ 1. Let S be any system of representatives of G/H and
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assume : ∑
g∈S

|df(g−1e)|q < +∞. (∗)

Then (Γ,P , ℓq(P)) is a structure of space with labelled partitions where ℓq(P) ≃ ℓq(G/H)

and G acts by automorphisms on (Γ,P , ℓq(P)).

Proof. Let v, v′ ∈ V and consider an edge-path ep(v, v′) connecting v to v′. For p ∈ P , we

have :

c(v, v′)(p) = p(v)− p(v′) =
∑

e∈ep(v,v′)

dp(e).

Hence :

∥c(v, v′)∥qq =
∑
p∈P

|p(v)− p(v′)|q,

=
∑
p∈P

|
∑

e∈ep(v,v′)

dp(e)|q,

≤ 2p
∑

e∈ep(v,v′)

∑
[g]∈G/H

|d(g.f)(e)|q,

∥c(v, v′)∥qq ≤ 2p
∑

e∈ep(v,v′)

∑
g∈S

|df(g−1e)|q < +∞ by (∗).

It follows that (Γ,P , ℓq(P)) is a space with labelled partitions and the natural action of

G on P induces an action by automorphisms on it.

The previous proposition gives a way to produce structures of labelled partitions on

graphs and more generally, by considering a similar ℓp condition (see condition (∗) above)
for a differentiable function, on manifolds. On Gromov hyperbolic groups, following results

of Bourdon in [Bou11] or Nica in [Nic12], such functions can be determine in terms of the

boundary of the group and of its ℓp-cohomology.

It would be interesting to find new examples of spaces with labelled partitions from

functions with such ℓp condition on the differential and given by the geometry of the

space. In the case of the complex hyperbolic space, the metric
√
dhyp, where dhyp is the

hyperbolic metric, can be obtained from a structure of space with measure walls. It is not

known wether dhyp itself can be realized as wall metric. We can ask a similar question in

terms of labelled partitions metric :

Question 4.1.3. Is there exists a structure of labelled partitions given by the geometry of

the complex hyperbolic space Hn
C which gives a proper isometric affine action of SU(n, 1)

on a Hilbert space ?
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4.1.2 Other constructions of spaces with labelled partitions

1. Semi-direct product and extension of groups

In Part 1.4.3 we discuss a construction of a space with labelled partitions for the semi-

direct product which “preserves” the properness of each factor’s action. A key hypothesis

in Theorem 3 is that G1⋊ρG2 acts by automorphisms on the space with labelled partitions

associated with G1. Then we can ask the following :

Question 4.1.4. What are the conditions on ρ which ensure the existence of a space with

labelled partitions on which G1⋊ρG2 acts by automorphisms and such that the G1-action

on it is proper ?

Such conditions would give an answer to the following question asked by Valette in

[CCJ+01] for the Haagerup property (property PL2) :

Question 4.1.5. Let G1, G2 be groups with property PLp and ρ : G2 → Aut(G1) be a

morphism. What are the conditions on ρ which ensures that G1 ⋊ρ G2 has property PLp.

In this context, the Haagerup property is still unknown for braid groups Bn, for n ≥ 4.

The pure braid group Pn is a finite index subgroup of Bn and can be viewed has the semi-

direct product Fn−1 ⋊ Pn−1.

Question 4.1.6. Let n ≥ 4. Does the pure braid group Pn has Haagerup property ?

To illustrate Question 4.1.4, we refer to Theorem 1.4.12 : assume I is a G2-set and G1

acts properly by automorphisms on (G1,P , F (P)). Now consider the space with labelled

partitions on
⊕

I G1 given by Theorem 1.4.12. Then
⊕

I G1 acts properly by automor-

phisms on it but the G2-action on
⊕

I G1 by shift does not induce an action by automor-

phisms.

In light of the structure of space with walls given in [CSV12] (see Theorem 1.5.3), a first

step in answering Question 4.1.4 is the case of wreath product : How can we build a space

with labelled partitions stable by the G2-action by shift and such that G1 acts properly

on it ?

Notice that in the case of the permutational wreath product H ≀I G, Chifan and Ioana

in [CI11] give an obstruction to the stability of Haagerup property. If the pair (G, I) has

relative property (T), then H ≀I G does not have the Haagerup property.

What are then the obstructions in the case of the permutational wreath product of groups

with property PLp ?

129



Futhermore, semi-direct products are particular cases of group extensions. For a group

extension 1 → H → G→ K → 1, we can wonder if there is a result similar to the case the

semi-direct product (see Theorem 3) : given structures of spaces with labelled partitons

for H and K under which conditions can we build a space with labelled partitions for G

from this structures that perserves properness properties ?

2. Amalgamated products and HNN extensions

We can replace the construction of free product of spaces with labelled partitions in

Section 1.6 to the notion of “tree of spaces with labelled partitions“ :

Definition 4.1.7. Let T = (V,E) be a tree with fixed edges orientation, ((Xv, dv))v∈V and

((Xe, de))e∈E be collections of non empty sets such that there exists, for all e = (e−, e+) ∈
E :

Fe− : Xe ↪−→ Xe− and Fe+ : Xe ↪−→ Xe+ .

The tree of spaces associated with T and the collections of sets ((Xv, dv))v∈V and ((Xe, de))e∈E
is the set X defined by :

X =

(⊔
v∈V

Xv ⊔
⊔
e∈E

(Xe × [0, 1])

)
/ ∼,

where the identification ∼ is given by, for e = (v−, v+) ∈ E,

Xe × {0} ∼ Fe−(Xe) and Xe × {1} ∼ Fe+(Xe).

Consider a tree T = (V,E), a collection of non empty spaces with labelled partitions

(Xv,Pv, Fv(Pv))v∈V and a colletion of singletons ({•})e∈E. For each edge e = (e−, e+) of

T , we choose two elements x0e− ∈ Xe− , x
0
e+ ∈ Xe+ and we consider the trivial embeddings :

Fe− : • 7→ x0e− and Fe+ : • 7→ x0e+ .

As in Part 1.6.2, we can extend a partition of a vertex set Xv to a partition of the tree of

spaces X. Hence, the space with labelled partition on each vertex set induces a natural

space with labelled partitions on the tree of space X.

Moreover, the canonical structure of space with walls of the tree T induces a structure

of space with walls (X,W ) on X. Viewed a space with labelled partitions, the structure
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(X,W ) is the analog of the space with labelled partitions we consider in Definition 1.6.26.

When put together, the previous two structures of labelled partitions on the tree of spaces

X induce a proper pseudo-metric of labelled partitions on X.

We want to generalize this construction of space with labelled partitions on a tree of

spaces when the edge spaces are no longer reduced to a point.

Question 4.1.8. What are the conditions on the edge embeddings Fe− and Fe+ that gua-

rantee the extensions of the labelled partitions on the vertex sets and edge sets to the all

tree of spaces ?

Amalgamated products and HNN-extensions of groups act naturally on a tree of spaces

associated with their Bass-Serre tree (see [SW79]). An answer to Question 4.1.8 could

provide conditions for the stability of property PLp by amalgamated product and HNN-

extensions in terms of the subgroups considered.

More precisely, in the case of an amalgamated productA∗CB, a way to produce compatible

labelled partitions on the tree of spaces could be the following :

Assume there exists structures of spaces with labelled partitions on A/C and B/C such

that the respective quotient actions of A and B induce proper actions by automorphisms

of spaces with labelled partitions. Taking the pullbacks of the structures of space with

labelled partitions by the canonical quotient maps πA : A ↠ A/C and πB : B ↠ B/C,

we can define a structure of labelled partitions compatible with the embeddings C ↪→ A

and C ↪→ B.

3. Relatively hyperbolic groups

Question 4.1.9. Does a relatively hyperbolic group with peripheral subgroups having pro-

perty PLp admit property PLp ?

In [Hum11], Hume proved that a relatively hyperbolic group admits coarse embeddings

into ℓp-spaces providing its maximal peripheral subgroups do - and moreover, he states

that its ℓp compression exponent is equal to the minimum of the exponents of its maximal

peripheral subgroups.

In the previous question, we asked about the equivariant case. A way to answer this

would be to build a space with labelled partitions, given structures of spaces with labelled

partitions on the peripheral subgroups {Hi}, on which the relatively hyperbolic group

G act properly by automorphisms. We could use the hyperbolicity of the Cayley graph
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Cay(G,S ∪ {Hi}) to perform such a construction. Notice that a difficulty arises from

this point of view : the Caley graph mentionned before is not uniformly locally finite. A

recent result of Dreesen in [Dre13] could help to overcome this difficulty. He generalized

Bourdon’s result in [Bou11] in the following way : any locally compact hyperbolic group

admits a proper isometric affine action on an Lp space for p larger than the Ahlfors regular

conformal dimension of ∂G.

4.2 Questions and developements about δ-median spaces

4.2.1 Lδ spaces

As we said in the introduction of Chapter 2, we can consider a weaker version of

Definition 2.3.6 for quasi-median spaces by replacing the L′
δ condition by Lδ. A natural

question to ask is the following :

Question 4.2.1. Is Theorem 7 still valid when replacing L′
δ by Lδ in the quasi-median

definition ?

A key ingredient in the proof of Theorem 2.5.6 is that in L′
δ spaces, a thick interval is

included in some neighbourhood of an interval (see Proposition 2.3.5). In Lδ spaces, this

fact is no longer true in general.

4.2.2 Convex gluing

In Theorem 8, we considered a gluing of quasi-median spaces by identifying singletons.

We want to generalize this theorem in the case of an identification on a quasi-convex

subspace for an appropriate notion of quasi-convexity in the settings of quasi-median

spaces :

Question 4.2.2. Let A,B be quasi-median spaces and C ↪→ A, C ↪→ B be isometric

embeddings. What are the conditions on C which ensure that (A∪B)/C is quasi-median ?

4.2.3 Boundary and structure of space with labelled partitions

In light of the works of Bourdon in [Bou11] and Nica in [Nic12], we want to define a

Lp structure of labelled partitions on quasi-median spaces. This may be possible with a
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relevant notion of boundary for quasi-median spaces which would, in one hand, generalize

the notion of visual boundary for hyperbolic spaces and, on the other hand, generalize

the notion of Roller boundary for median spaces.

Question 4.2.3. Is there a structure of boundary for quasi median-space ?

4.3 Developements about plig metrics on compactly

generated groups

4.3.1 Action on Banach spaces

As we saw in Part 3.4, Haagerup and Przybyszewska in [HP06] showed that a locally

compact group G acts properly by affine isometries on the Banach space
⊕

n∈N∗ L2n(G)

using a plig metric with exponential growth control on the balls. It could be interesting to

improve this result using the properties of the pseudo-metric ρV for compactly generated

groups.

Question 4.3.1. Under what conditions on the compactly generated group G does there

exists a proper action by affine isometries on a finite sum of Lp spaces ?

4.3.2 Geodesic metric

Question 4.3.2. What are the conditions on a csg mobile neighbourhood V of e which

ensure that there exists geodesic paths for ρV ?

An sufficient condition which guarantees that an optimal V -path (w0, ..., wk) is a geo-

desic path is the following :

For i = 0, ..., k − 1, wi+1V ∩
i∪

j=0

wjV ⊂ wiV.

This condition is not fulfilled in general but this may be true for some V satisfying a

”regularity“ property :

Let V be a csg neighbourhood of e. We denote αV = sup{ρV (e, v) | v ∈ V } and we

consider the following re-scaled pseudo-metric on G :

dV =
1

αV

ρV .
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Definition 4.3.3. We say that a csg neighbourhood V of e is regular if

BdV (e, 1) = V.

Then We can ask the following :

Question 4.3.4. Let G be a compactly generated group. Is there exists regular csg neigh-

bourhood of e ?

A way to produce regular neighbourhood could be to prove that the following sequence

actually converges :

Let V be a csg neighbourhood of e, and consider the sequence (Vn)n∈N of csg neighbou-

rhood of e defined by induction by :V0 = V

Vn+1 = BdVn
(e, 1) for n ≥ 0.
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Sylvain Arnt

Géométrie à grande échelle et actions isométriques affines sur des espaces de Banach

Dans le premier chapitre, nous définissons la notion d’espaces à partitions pondérées qui généralise la structure

d’espaces à murs mesurés et qui fournit un cadre géométrique à l’étude des actions isométriques affines sur des

espaces de Banach pour les groupes localement compacts à base dénombrable. Dans un premier temps, nous

caractérisons les actions isométriques affines propres sur des espaces de Banach en termes d’actions propres par

automorphismes sur des espaces à partitions pondérées. Puis, nous nous intéressons aux structures de partitions

pondérées naturelles pour les actions de certaines constructions de groupes : somme directe ; produit semi-directe ;

produit en couronne et produit libre. Nous établissons ainsi des résultats de stabilité de la propriété PLp par ces

constructions. Notamment, nous généralisons un résultat de Cornulier, Stalder et Valette de la façon suivante : le

produit en couronne d’un groupe ayant la propriété PLp par un groupe ayant la propriété de Haagerup possède la

propriété PLp.

Dans le deuxième chapitre, nous nous intéressons aux espaces métriques quasi-médians - une généralisation des

espaces hyperboliques à la Gromov et des espaces médians - et à leur propriétés. Après l’étude de quelques exemples,

nous démontrons qu’un espace δ-médian est δ′-médian pour tout δ′ ≥ δ. Ce résultat nous permet par la suite

d’établir la stabilité par produit directe et par produit libre d’espaces métriques - notion que nous développons par

la même occasion.

Le troisième chapitre est consacré à la définition et l’étude d’une distance propre, invariante à gauche et qui

engendre la topologie explicite sur les groupes localement compacts, compactement engendrés. Après avoir montré

les propriétés précédentes, nous prouvons que cette distance est quasi-isométrique à la distance des mots sur le

groupe et que la croissance du volume des boules est contrôlée exponentiellement.

Large scale geometry and isometric affine actions on Banach spaces

In the first chapter, we define the notion of spaces with labelled partitions which generalizes the structure of

spaces with measured walls : it provides a geometric setting to study isometric affine actions on Banach spaces

of second countable locally compact groups. First, we characterise isometric affine actions on Banach spaces in

terms of proper actions by automorphisms on spaces with labelled partitions. Then, we focus on natural structures

of labelled partitions for actions of some group constructions : direct sum ; semi-direct product ; wreath product

and free product. We establish stability results for property PLp by these constructions. Especially, we generalize a

result of Cornulier, Stalder and Valette in the following way : the wreath product of a group having property PLp

by a Haagerup group has property PLp.

In the second chapter, we focus on the notion of quasi-median metric spaces - a generalization of both Gromov

hyperbolic spaces and median spaces - and its properties. After the study of some examples, we show that a δ-

median space is δ′-median for all δ′ ≥ δ. This result gives us a way to establish the stability of the quasi-median

property by direct product and by free product of metric spaces - notion that we develop at the same time.

The third chapter is devoted to the definition and the study of an explicit proper, left-invariant metric which

generates the topology on locally compact, compactly generated groups. Having showed these properties, we prove

that this metric is quasi-isometric to the word metric and that the volume growth of the balls is exponentially

controlled.
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